Poor formability in hot-rolled strips may be attributed to the many pearlite-banded structures (PBSs) that develop in steel during the hot-rolling process. The challenge of manufacturing strips with minimum PBSs is that multiple factors influence the amount and distribution of the PBSs. This study used the Taguchi method to find the optimum hot-rolling parameters to obtain strips with a reduced number of PBSs. The strips were then subjected to bending tests to evaluate their ductility. The first part analyzes the contribution of selected parameters to the hot-rolling process: (1) finishing rolling temperature, (2) finishing rolling speed, (3) coiling temperature, and (4) coiling speed. The second part confirms, using bending tests, the influence of the finishing rolling temperatures 780, 800, 820, 840, 860, 870, and 880 °C on the formability of an A36 hot-rolled strip. Based on the experimental protocol for the study, the optimal process parameters were determined to be the finishing rolling speed (0.80 m/s), finishing rolling temperature (870 °C), coiling speed (2.80 m/s), and coiling temperature (650 °C). When the A36 strip was prepared at the optimum parameters, the average length and thickness of the PBS were 108.61 ± 0.11 μm and 10.18 ± 0.12 μm, respectively. According to the Taguchi analysis, the finishing rolling temperature had the most significant influence on the dimensions of the PBS. In tests where the hot-rolled A36 strip was bent to 90° and 180°, at the finishing rolling temperatures of 870 °C and 880 °C, no cracking was observed at the R angle.
The surfaces of cold-rolled titanium-containing ferrite stainless steel (TCFSS) strips produced from scrap are prone to severe peeling owing to cracking near slab inclusions during hot rolling. In this study, the Taguchi method was used to prevent peeling defects and clogging of the submerged entrance nozzle, and the optimal casting parameters, such as the degree of casting overheating, casting speed, stirring time, and inclination, were determined. The results showed that increasing the degree of casting overheating and decreasing the casting speed prevented clogging and effectively mitigated peeling defects. Sample A3B1C3D2 had the optimal parameters to reduce the clog thickness to less than 1.5 mm, i.e., a degree of overheating of 60 °C, a casting speed of 0.80 m/min, a stirring time of 12.0 s, and an inclination angle of 6.0°. Sample A3B1C1D3 had the optimal parameters to prevent peeling defects, i.e., a degree of overheating of 60 °C, a casting speed of 0.80 m/min, a stirring time of 10.0 s, and an inclination angle of 6.2°. When casting using these optimal parameters, no peeling defects were observed on the surfaces of the TCFSS strips. The TCFSS strips produced using the optimized parameters exhibited the required mechanical properties and satisfied the design criteria. The parameters included a tensile strength of ≥415 MPa, a yield strength of ≥205 MPa, an elongation of ≥22%, and a hardness of ≤89 HRB.
Owing to the durability of stainless steel, stainless steel components can be effectively reused, remanufactured, and indefinitely recycled. The production of stainless steel from scrap is expected to be a trend in the future to achieve a circular economy. However, the surface of cold-rolled Ti-containing ferrite stainless steel strips produced from scrap is prone to severe peeling. In this study, it was found that peeling defects were caused by cracking near slab inclusions during hot rolling. These inclusions mainly comprised Ti oxides, Ti nitrides, and Al oxides generated from clogged and submerged entrance nozzles. To prevent peeling defects and the clogging of the submerged entrance nozzle, the Taguchi method was used and the optimal casting parameters, such as casting overheating, casting speed, stirring time, and inclination, were determined. Increasing casting overheating and decreasing the casting speed inhibited clogging and effectively mitigated peeling defects. When casting overheat was fixed at 60°C with a casting speed in the range of 0.8–0.9 m/min, no peeling defects on the surface of the steel strip were observed. The steel strip produced using the optimized parameters fulfilled the required mechanical properties (tensile strength ≥ 415 MPa, yield strength ≥ 205 MPa, elongation ≥ 22%, and hardness ≤ 89 HRB) and design criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.