Y14 is a core component of the exon junction complex (EJC), while it also exerts cellular functions independent of the EJC. Depletion of Y14 causes G2/M arrest, DNA damage and apoptosis. Here we show that knockdown of Y14 induces the expression of an alternative spliced isoform of p53, namely p53β, in human cells. Y14, in the context of the EJC, inhibited aberrant exon inclusion during the splicing of p53 pre-mRNA, and thus prevent p53β expression. The anti-cancer agent camptothecin specifically suppressed p53β induction. Intriguingly, both depletion and overexpression of Y14 increased overall p53 protein levels, suggesting that Y14 governs the quality and quantity control of p53. Moreover, Y14 depletion unexpectedly reduced p21 protein levels, which in conjunction with aberrant p53 expression accordingly increased cell sensitivity to genotoxic agents. This study establishes a direct link between Y14 and p53 expression and suggests a function for Y14 in DNA damage signaling.
RBM4 modulates alternative exon selection of Numb and up-regulates proneural Mash1 gene expression, possibly via specific Numb isoforms. RBM4 overexpression promotes neuronal cell differentiation. Moreover, RBM4 is essential for neurite outgrowth in primary cortical neurons by modulating specific Numb isoform expression.
Vagus nerve stimulation (VNS) paired with rehabilitation training is emerging as a potential treatment for improving recovery of motor function following stroke. In rats, VNS paired with skilled forelimb training results in significant reorganization of the somatotopic cortical motor map; however, the mechanisms underlying this form of VNS-dependent plasticity remain unclear. Recent studies have shown that VNS-driven cortical plasticity is dependent on noradrenergic innervation of the neocortex. In the central nervous system, noradrenergic α2 receptors (α2-ARs) are widely expressed in the motor cortex and have been critically implicated in synaptic communication and plasticity. In current study, we examined whether activation of cortical α2-ARs is necessary for VNS-driven motor cortical reorganization to occur. Consistent with previous studies, we found that VNS paired with motor training enlarges the map representation of task-relevant musculature in the motor cortex. Infusion of α2-AR antagonists into M1 blocked VNS-driven motor map reorganization from occurring. Our results suggest that local α2-AR activation is required for VNS-induced cortical reorganization to occur, providing insight into the mechanisms that may underlie the neuroplastic effects of VNS therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.