Obesity and type 2 diabetes are increasing in prevalence at an alarming rate in developed and developing nations, and over 50% of patients with prolonged stages of disease experience forms of autonomic neuropathy. These patients have symptoms indicating disrupted enteric nervous system function including gastric discomfort, gastroparesis and intestinal dysmotility. Previous assessments have examined enteric neuronal injury within either type 1 diabetic or transgenic type 2 diabetic contexts. This study aimed to assess damage to myenteric neurons within the duodenum of high fat diet ingesting mice experiencing symptoms of type 2 diabetes, as this disease context is most parallel to the human condition and disrupted duodenal motility underlies negative gastrointestinal symptoms. Mice fed a high fat diet developed symptoms of obesity and diabetes by 4 weeks. After 8 weeks, the total number of duodenal myenteric neurons and synaptophysin density index were reduced and transmission electron microscopy showed axonal swelling and loss of neurofilaments and microtubules, suggesting compromised neuronal health. High fat diet ingestion correlated with a loss of neurons expressing VIP and nNOS, but did not affect the expression of ChAT, substance P, calbindin and CGRP. These results correlate high fat diet ingestion, obesity and type 2 diabetes symptoms with a loss of duodenal neurons, biasing towards those with inhibitory nature. This pathology may underlie dysmotility and other negative GI symptoms experienced by human type 2 diabetic and obese patients.
Background-Garcinia buchananii bark extract is a traditional African remedy for diarrhea, dysentery, abdominal discomfort and pain. We investigated the mechanisms and efficacy of this extract using the guinea pig distal colon model of gastrointestinal motility.
Diabetes and obesity are increasing in prevalence at an alarming rate throughout the world. Autonomic diabetic neuropathy is evident in individuals that experience a long-standing diabetic disease state, and gastrointestinal (GI) dysmotility is thought to be the outcome of neuropathies within the enteric nervous system (ENS) of these patients. To date, an analysis of enteric glial cell population changes during diabetic symptoms has not been performed, and may bring insight into disease pathology and neuropathy, given glial cell implications in gastrointestinal and neuronal homeostasis. Diabetes and obesity were monitored in C57Bl/6J mice fed a 72% high-fat diet, and duodenal glial expression patterns were evaluated by immunohistochemistry and RT-PCR for S100β, Sox10 and GFAP proteins and transcripts, as well as transmission electron microscopy (TEM). The high-fat diet caused obesity, hyperglycemia and insulin resistance after 4 weeks. These changes were associated with a significant decline in the area density indices of mucosa-associated glial cell networks, evidenced by S100β staining at 8 and 20 weeks. All three markers and TEM showed that myenteric glial cells were unaffected by early and late disease periods. However, analysis of Sox10 transcript expression and immunoreactivity showed a diet independent, age-associated decline in glial cell populations. This is the first study showing that mucosal glia cell damage occurs during diabetic symptoms, suggesting that mucosal enteric glia injury may have a pathophysiological significance during this disease. Our results also provide support for age-associated changes in longitudinal studies of enteric glial cells.
Symptoms of diabetic gastrointestinal dysmotility indicate neuropathy of the enteric nervous system. Long-standing diabetic enteric neuropathy has not been fully characterized, however. We used prolonged high fat diet ingestion (20 weeks) in a mouse model to mimic human obese and type 2 diabetic conditions, and analyzed changes seen in neurons of the duodenal myenteric plexus. Ganglionic and neuronal size, number of neurons per ganglionic area, density indices of neuronal phenotypes (immunoreactive nerve cell bodies and varicosities per ganglion or tissue area) and nerve injury were measured. Findings were compared with results previously seen in mice fed the same diet for 8 weeks. Compared to mice fed standard chow, those on a prolonged high fat diet had smaller ganglionic and cell soma areas. Myenteric VIP- and ChAT-immunoreactive density indices were also reduced. Myenteric nerve fibers were markedly swollen and cytoskeletal protein networks were disrupted. The number of nNOS nerve cell bodies per ganglia was increased, contrary to the reduction previously seen after 8 weeks, but the density index of nNOS varicosities was reduced. Mice fed high fat and standard chow diets experienced an age-related reduction in total neurons, biasing towards neurons of sensory phenotype. Meanwhile ageing was associated with an increase in excitatory neuronal markers. Collectively, these results support a notion that nerve damage underlies diabetic symptoms of dysmotility, and reveals adaptive ENS responses to the prolonged ingestion of a high fat diet. This highlights a need to mechanistically study long-term diet-induced nerve damage and age-related impacts on the ENS.
These results indicate that the anti-motility effects of G. buchananii aqueous extract are potentially mediated by compounds that affect 5-HT(3) and 5-HT(4) receptors. Identification and characterization of the bioactive compounds within G. buchananii could lead to the discovery of new non-opiate anti-diarrhea formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.