Lignocellulosic biomass is a potentially more valuable renewable resource that can be utilized effusively as a chief source of heat for cooking and can correspondingly subsidize the production of electricity, heat, biofuels and chemicals including solid fuel like char or carbon. Lignocellulosic residues are mixed and burnt with coal to generate electricity. Presently, crude oil is replaced by bioethanol and biodiesel produced from biomass substrate. Some special class of chemicals can be derived from biomass that can subsequently replace the usage of non-renewable resources of oil and coal. Pyrolysis of woody biomass to obtain pyroliginous acid was started hundreds of years ago, which has versatile applications. The range of products that can be derived from biomass is huge, prompting extent of research using different types of thermal conversion technologies, including pyrolysis, gasification, torrefaction, anaerobic digestion and hydrothermal processing. This chapter provides insights about the stages of reaction during pyrolysis and the outcome of reaction conditions on the products. Technical development and adjustment of process condition can offer a suitable environmentally benign scheme to increase the energy density of the lignocellulosic residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.