Premature aging syndromes often result from mutations in nuclear proteins involved in the maintenance of genomic integrity. Lamin A is a major component of the nuclear lamina and nuclear skeleton. Truncation in lamin A causes Hutchinson-Gilford progerial syndrome (HGPS), a severe form of early-onset premature aging. Lack of functional Zmpste24, a metalloproteinase responsible for the maturation of prelamin A, also results in progeroid phenotypes in mice and humans. We found that Zmpste24-deficient mouse embryonic fibroblasts (MEFs) show increased DNA damage and chromosome aberrations and are more sensitive to DNA-damaging agents. Bone marrow cells isolated from Zmpste24-/- mice show increased aneuploidy and the mice are more sensitive to DNA-damaging agents. Recruitment of p53 binding protein 1 (53BP1) and Rad51 to sites of DNA lesion is impaired in Zmpste24-/- MEFs and in HGPS fibroblasts, resulting in delayed checkpoint response and defective DNA repair. Wild-type MEFs ectopically expressing unprocessible prelamin A show similar defects in checkpoint response and DNA repair. Our results indicate that unprocessed prelamin A and truncated lamin A act dominant negatively to perturb DNA damage response and repair, resulting in genomic instability which might contribute to laminopathy-based premature aging.
The type II inner nuclear membrane protein emerin is a component of the LINC complex that connects the nuclear lamina to the actin cytoskeleton. In emerin-null or -deficient human dermal fibroblasts we find that the centrosome is detached from the nucleus. Moreover, following siRNA knockdown of emerin in wild-type fibroblasts, the centrosome also becomes detached from the nucleus. We show that emerin interacts with tubulin, and that nocadozole-treated wild-type cells phenocopy the detached centrosome characteristic of emerin-null/deficient cells. We also find that a significant fraction of emerin is located at the outer nuclear membrane and peripheral ER, where it interacts directly with the centrosome. Our data provide the first evidence in mammalian cells as to the nature of the linkage of the centrosome, and therefore the tubulin cytoskeleton, with the outer nuclear membrane.
The gene LMNA encodes the proteins lamins A and C and is implicated in nine different laminopathies - inherited diseases that are linked to premature ageing. Recent evidence has demonstrated that lamins A and C have essential functions in protecting cells from physical damage, as well as in maintaining the function of transcription factors required for the differentiation of adult stem cells. Thus, the degenerative nature of laminopathies is explained because these lamins are essential for maintenance of somatic tissues in adulthood.
In human diploid fibroblasts (HDFs), expression of lamina-associated polypeptide 2 α (LAP2α) upon entry and exit from G0 is tightly correlated with phosphorylation and subnuclear localization of retinoblastoma protein (Rb). Phosphoisoforms of Rb and LAP2α are down-regulated in G0. Although RbS780 phosphoform and LAP2α are up-regulated upon reentry into G1 and colocalize in the nucleoplasm, RbS795 migrates between nucleoplasmic and speckle compartments. In HDFs, which are null for lamins A/C, LAP2α is mislocalized within nuclear aggregates, and this is correlated with cell cycle arrest and accumulation of Rb within speckles. Nuclear retention of nucleoplasmic Rb during G1 phase but not of speckle-associated Rb depends on lamin A/C. siRNA knock down of LAP2α or lamin A/C in HDFs leads to accumulation of Rb in speckles and G1 arrest, probably because of activation of a cell cycle checkpoint. Our results suggest that LAP2α and lamin A/C are involved in controlling Rb localization and phosphorylation, and a lack or mislocalization of either protein leads to cell cycle arrest in HDFs.
In this study we used a unique collection of type specific anti-lamin antibodies to study lamin expression patterns in normal human skin and in skin derived from patients with basal cell carcinomas (BCCs). Lamin expression in serial sections from frozen tissue samples was investigated by single and double indirect immunofluorescence. In normal skin, lamin A was expressed in dermal fibroblasts and in suprabasal epithelial cells but was absent from all basal epithelial cells. Lamin C was expressed in dermal fibroblasts, suprabasal epithelial cells and a majority of basal epithelial cells. However, lamin C was not expressed in quiescent basal epithelial cells. Lamin B 1 was expressed in all epithelial cells but was not expressed in dermal fibroblasts. Finally, lamin B 2 was expressed in all epithelial cells but was not expressed in dermal fibroblasts. Finally, lamin B 2 was expressed in all cell types in normal skin. Lamin expression was also investigated in a collection of 16 BCCs taken from a variety of body sites. Based upon patterns of lamin expression the BCCs were classified into four groups: A-negative (10/16 tumours), C-negative (5/16 tumours), A/C-negative (1/16 tumours) and A/B 2 -negative (1/16 tumours). Lamin expression was also compared to cell proliferation index by staining serial sections with the proliferation marker Ki67. 9/10 of the lamin A negative tumours were highly proliferative, whereas 4/5 of the lamin C negative tumours were slow growing. Thus as a general rule absence of lamin A was correlated with rapid growth within the tumour, while absence of lamin C was correlated with slow growth within the tumour. Our data supports the hypothesis that lamin A has a negative influence on cell proliferation and its down regulation may be a requisite of tumour progression. © 2001 Cancer Research Campaign http://www.bjcancer.com
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.