AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles (e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities, and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
As MOOCs grow in popularity, the relatively low completion rates of learners has been a central criticism. This focus on completion rates, however, reflects a monolithic view of disengagement that does not allow MOOC designers to target interventions or develop adaptive course features for particular subpopulations of learners. To address this, we present a simple, scalable, and informative classification method that identifies a small number of longitudinal engagement trajectories in MOOCs. Learners are classified based on their patterns of interaction with video lectures and assessments, the primary features of most MOOCs to date.In an analysis of three computer science MOOCs, the classifier consistently identifies four prototypical trajectories of engagement. The most notable of these is the learners who stay engaged through the course without taking assessments. These trajectories are also a useful framework for the comparison of learner engagement between different course structures or instructional approaches. We compare learners in each trajectory and course across demographics, forum participation, video access, and reports of overall experience. These results inform a discussion of future interventions, research, and design directions for MOOCs. Potential improvements to the classification mechanism are also discussed, including the introduction of more fine-grained analytics.
Exploring the whole sequence of steps a student takes to produce work, and the patterns that emerge from thousands of such sequences is fertile ground for a richer understanding of learning. In this paper we autonomously generate hints for the Code.org 'Hour of Code,' (which is to the best of our knowledge the largest online course to date) using historical student data. We first develop a family of algorithms that can predict the way an expert teacher would encourage a student to make forward progress. Such predictions can form the basis for effective hint generation systems. The algorithms are more accurate than current state-of-the-art methods at recreating expert suggestions, are easy to implement and scale well. We then show that the same framework which motivated the hint generating algorithms suggests a sequence-based statistic that can be measured for each learner. We discover that this statistic is highly predictive of a student's future success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.