Purpose
Three-dimensional (3D) surgical planning is widely accepted in liver surgery. Currently, the 3D reconstructions are usually presented as 3D PDF data on regular monitors. 3D-printed liver models are sometimes used for education and planning.
Methods
We developed an immersive virtual reality (VR) application that enables the presentation of preoperative 3D models. The 3D reconstructions are exported as STL files and easily imported into the application, which creates the virtual model automatically. The presentation is possible in “OpenVR”-ready VR headsets. To interact with the 3D liver model, VR controllers are used. Scaling is possible, as well as changing the opacity from invisible over transparent to fully opaque. In addition, the surgeon can draw potential resection lines on the surface of the liver. All these functions can be used in a single or multi-user mode.
Results
Five highly experienced HPB surgeons of our department evaluated the VR application after using it for the very first time and considered it helpful according to the “System Usability Scale” (SUS) with a score of 76.6%. Especially with the subitem “necessary learning effort,” it was shown that the application is easy to use.
Conclusion
We introduce an immersive, interactive presentation of medical volume data for preoperative 3D liver surgery planning. The application is easy to use and may have advantages over 3D PDF and 3D print in preoperative liver surgery planning. Prospective trials are needed to evaluate the optimal presentation mode of 3D liver models.
Hemodialysis patients (HDP) and kidney transplant recipients (KTR) have a high risk of infection with SARS-CoV-2 with poor clinical outcomes. Because of this, vaccination of these groups of patients against SARS-CoV-2 is particularly important. However, immune responses may be impaired in immunosuppressed and chronically ill patients. Here, our aim was to compare the efficacy of an mRNA-based vaccine in HDP, KTR, and healthy subjects. Design: In this prospective observational cohort study, the humoral and cellular response of prevalent 192 HDP, 50 KTR, and 28 healthy controls (HC) was assessed 1, 2, and 6 months after the first immunization with the BNT162b2 mRNA vaccine. Results: After 6 months, 97.5% of HDP, 37.9% of KTR, and 100% of HC had an antibody response. Median antibody levels were 1539.7 (±3355.8), 178.5 (±369.5), and 2657.8 (±2965.8) AU/mL in HDP, KTR, and HC, respectively (p ≤ 0.05). A SARS-CoV-2 antigen-specific cell response to vaccination was found in 68.8% of HDP, 64.5% of KTR, and 90% of HC. Conclusion: The humoral response rates to mRNA-based vaccination of HDPs are comparable to HCs, but antibody titers are lower. Furthermore, HDPs have weaker T-cell response to vaccination than HCs. KTRs have very low humoral and antigen-specific cellular response rates and antibody titers, which requires other vaccination strategies in addition to booster vaccination.
Overall stability of the separate EVAS stent-grafts is promising in the short term. Relevant conformational changes (stent-graft deviation) in the majority of cases were benign and confined to the iliac segment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.