The prevention of tooth decay and the treatment of lesions and cavities are ongoing challenges in dentistry. In recent years, biomimetic approaches have been used to develop nanomaterials for inclusion in a variety of oral health-care products. Examples include liquids and pastes that contain nano-apatites for biofilm management at the tooth surface, and products that contain nanomaterials for the remineralization of early submicrometre-sized enamel lesions. However, the treatment of larger visible cavities with nanomaterials is still at the research stage. Here, we review progress in the development of nanomaterials for different applications in preventive dentistry and research, including clinical trials.
One of the greatest challenges in life sciences and biomaterials research is adhesion of biomolecules and bacteria to solid surfaces in aqueous solutions. An example concerning everybody is biofilm formation in the oral cavity on dental materials and dental hard substances, respectively. The main characteristics typical for any bioadhesion can be observed excellently in the oral cavity. Initially, a proteinaceous layer termed pellicle is formed. It mediates the interactions between solid substrata, oral fluids and microorganisms. Numerous different materials with differing physico-chemical properties and possible impact on the acquired pellicle are present in the oral cavity such as enamel, dentine, restorative materials or dental implants. Despite the fact that in vitro studies demonstrate considerable differences of experimental pellicles formed on these materials, the in situ pellicles seem to be relatively similar and level off the different properties of the underlying substrates. However, the bacterial colonisation of pellicle-coated surfaces under in vivo conditions differs considerably. Long-range forces and detachment of biofilm layers may account for this phenomenon despite the masking effect of the pellicle. Accordingly, low-energy surfaces are desirable for restorative materials exposed to the oral cavity to minimise bacterial adhesion. The oral cavity is an easy accessible in vivo model for understanding bioadhesion and for investigation of protein-surface interactions noninvasively. For evaluation of biofilm formation on dental materials, in situ or in vivo studies are preferable.
The aim of the present study was to investigate different fluorescence-based, two-color viability assays for visualization and quantification of initial bacterial adherence and to establish reliable alternatives to the ethidium bromide staining procedure. MATERIALS AND METHODS: Bacterial colonization was attained in situ on bovine enamel slabs (n = 6 subjects). Five different live/dead assays were investigated (fluorescein diacetate (FDA)/propidium iodide (PI), Syto 9/PI (Ba-cLight®), FDA/Sytox red, Calcein acetoxymethyl (AM)/Sytox red, and carboxyfluorescein diacetate (CFDA)/Sytox red). After 120 min of oral exposure, analysis was performed with an epifluorescence microscope. Validation was carried out, using the colony-forming units for quantification and the transmission electron microscopy for visualization after staining. RESULTS: The average number of bacteria amounted to 2.9 ± 0.8 × 10(4) cm(-2). Quantification with Syto 9/PI and Calcein AM/Sytox red yielded an almost equal distribution of cells (Syto 9/PI 45 % viable, 55 % avital; Calcein AM/Sytox red 52 % viable, 48 % avital). The live/dead ratio of CFDA/Sytox red and FDA/Sytox red was 3:2. An aberrant dispersal was recorded with FDA/PI (viable 34 %, avital 66 %). The TEM analysis indicated that all staining procedures affect the structural integrity of the bacterial cells considerably. CONCLUSION: The following live/dead assays are reliable techniques for differentiation of viable and avital adherent bacteria: BacLight, FDA/Sytox red, Calcein AM/Sytox red, and CFDA/Sytox red. These fluorescencebased techniques are applicable alternatives to toxic and instable conventional assays, such as the staining procedure based on ethidium bromide. CLINICAL RELEVANCE: Differentiation of viable and avital adherent bacteria offers the possibility for reliable evaluation of different mouth rinses, oral medication, and disinfections.
The acquired pellicle is a biofilm, free of bacteria, covering oral hard and soft tissues. It is composed of mucins, glycoproteins and proteins, among which are several enzymes. This review summarizes the present state of research on enzymes and their functions in the dental pellicle. Theoretically, all enzymes present in the oral cavity could be incorporated into the pellicle, but apparently enzymes are adsorbed selectively onto dental surfaces. There is clear evidence that enzymes are structural elements of the pellicle. Thereby they exhibit antibacterial properties but also facilitate bacterial colonization of dental hard tissues. Moreover, the immobilized enzymes are involved in modification and in homeostasis of the salivary pellicle. It has been demonstrated that amylase, lysozyme, carbonic anhydrases, glucosyltransferases and fructosyltransferase are immobilized in an active conformation in the pellicle layer formed in vivo. Other enzymes, such as peroxidase or transglutaminase, have been investigated in experimental pellicles. Despite the depicted impact of enzymes on the formation and function of pellicle, broader knowledge on their properties in the in vivo-formed pellicle is required. This might be beneficial in the development of new preventive and diagnostic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.