This paper presents a new approach for synthesizing transformations on tree-structured data, such as Unix directories and XML documents. We consider a general abstraction for such data, called hierarchical data trees (HDTs) and present a novel example-driven synthesis algorithm for HDT transformations. Our central insight is to reduce the problem of synthesizing tree transformers to the synthesis of list transformations that are applied to the paths of the tree. The synthesis problem over lists is solved using a new algorithm that combines SMT solving and decision tree learning. We have implemented our technique in a system called HADES and show that HADES can automatically synthesize a variety of interesting transformations collected from online forums.
This paper presents a new approach for synthesizing transformations on tree-structured data, such as Unix directories and XML documents. We consider a general abstraction for such data, called hierarchical data trees (HDTs) and present a novel example-driven synthesis algorithm for HDT transformations. Our central insight is to reduce the problem of synthesizing tree transformers to the synthesis of list transformations that are applied to the paths of the tree. The synthesis problem over lists is solved using a new algorithm that combines SMT solving and decision tree learning. We have implemented our technique in a system called HADES and show that HADES can automatically synthesize a variety of interesting transformations collected from online forums.
In the last decades, numerous program analyzers have been developed both by academia and industry. Despite their abundance however, there is currently no systematic way of comparing the effectiveness of different analyzers on arbitrary code. In this paper, we present the first automated technique for differentially testing soundness and precision of program analyzers. We used our technique to compare six mature, state-ofthe art analyzers on tens of thousands of automatically generated benchmarks. Our technique detected soundness and precision issues in most analyzers, and we evaluated the implications of these issues to both designers and users of program analyzers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.