We propose and empirically investigate a pricing model for convertible bonds based on Monte Carlo simulation. The method uses parametric representations of the early exercise decisions and consists of two stages. Pricing convertible bonds with the proposed Monte Carlo approach allows us to better capture both the dynamics of the underlying state variables and the rich set of real-world convertible bond specifications. Furthermore, using the simulation model proposed, we present an empirical pricing study of the US market, using 32 convertible bonds and 69 months of daily market prices. Our results do not confirm the evidence of previous studies that market prices of convertible bonds are on average lower than prices generated by a theoretical model. Similarly, our study is not supportive of a strong positive relationship between moneyness and mean pricing error, as argued in the literature.
Large banks often sell part of their loan portfolio in the form of collateralized debt obligations (CDO) to investors. In this paper we raise the question whether credit asset securitization affects the cyclicality (or commonality) of bank equity values. The commonality of bank equity values reflects a major component of systemic risks in the banking market, caused by correlated defaults of loans in the banks' loan books.Our simulations take into account the major stylized fact of CDO transactions, the non-proportional nature of risk sharing that goes along with tranching.We provide a theoretical framework for the risk transfer through securitization that builds on a macro risk factor and an idiosyncratic risk factor, allowing an identification of the types of risk that the individual tranche holders bear. This allows conclusions about the risk positions of issuing banks after risk transfer.Building on the strict subordination of tranches, we first evaluate the correlation properties both within and across risk classes. We then determine the effect of securitization on the systematic risk of all tranches, and derive its effect on the issuing bank's equity beta. The simulation results show that under plausible assumptions concerning bank reinvestment behavior and capital structure choice, the issuing intermediary's systematic risk tends to rise. We discuss the implications of our findings for financial stability supervision.
JEL classification: G28
We propose and empirically investigate a pricing model for convertible bonds based on Monte Carlo simulation. The method uses parametric representations of the early exercise decisions and consists of two stages. Pricing convertible bonds with the proposed Monte Carlo approach allows us to better capture both the dynamics of the underlying state variables and the rich set of real-world convertible bond specifications. Furthermore, using the simulation model proposed, we present an empirical pricing study of the US market, using 32 convertible bonds and 69 months of daily market prices. Our results do not confirm the evidence of previous studies that market prices of convertible bonds are on average lower than prices generated by a theoretical model. Similarly, our study is not supportive of a strong positive relationship between moneyness and mean pricing error, as argued in the literature.
All convertible bond time series used in this study were provided by Mace Advisers through UBS Warburg. We thank Zeno Dürr of UBS Warburg for his assistance in obtaining the data and for very helpful discussions and Rupert Kenna of UBS Warburg for his support with data. Furthermore, we thank
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.