Abstract. Monoclonal antibodies specific for the muscle protein titin have been used in conjunction with muscle-specific antibodies against myofibrillar myosin heavy chains (MHCs) and desmin to study myogenesis in cultured cells. Desmin synthesis is initiated in replicating presumptive myoblasts, whereas the synthesis of titin and MHC is initiated simultaneously in their progeny, the postmitotic, mononucleated myoblasts. Both titin and MHC are briefly localized to nonstriated and thereafter to definitively striated myofibrils. At no stage during myofibrillogenesis is either protein observed as part of a sequence of mini-sarcomeres. Titin antibodies bind to the A-I junction, MHC antibodies to the A bands in nascent, maturing, and mature myofibrils. In contrast, desmin remains distributed as longitudinal filaments until well after the definitive myofibrils have aligned laterally. This tight temporal and topographical linkage between titin and myosin is also observed in postmitotic, mononucleated myoblasts and multinucleated myotubes when myoflbrillogenesis is perturbed with Colcemid or taxol. Colcemid induces elongating postmitotic mononucleated myoblasts and multinucleated myotubes to round up and form Colcemid myosacs. The myofibrils that emerge in these rounded cells are deployed in convoluted circles. The time required for their nonstriated myofibrils to transform into striated myofibrils is greatly protracted. Furthermore, as Colcemid induces immense desmin intermediate filament cables, the normal spatial relationships between emerging individual myofibrils is distorted. Despite these disturbances at all stages, the characteristic temporal and spatial relationship observed in normal myofibrils between titin and MHC is observed in myofibrils assembling in Colcemid-treated cells. Newly born postmitotic mononucleated myoblasts, or maturing myotubes, reared in taxol acquire a star-shaped configuration and are induced to assemble "pseudo-striated myofibrils" Pseudo-striated myofibrils consist of laterally aggregated 1.6-1xm long, thick filaments that interdigitate, not with thin filaments, but with long microtubules. These atypical myofibrils lack Z bands. Despite the absence of thin filaments and Z bands, titin localizes with its characteristic sarcomeric periodicity in pseudo-striated myofibrils. We conclude that the initiation and subsequent regulation of titin and myosin synthesis, and their spatial deployment within developing sarcomeres are tightly coupled events. These findings are discussed in terms of a model that proposes interaction between two relatively autonomous "organizing centers" in the assembly of each sarcomere.
HighlightsDeep sequencing has potential as an improved adventitious virus screening method.15 laboratories sequenced a common reagent containing 25 target viruses.6 viruses were detected by all lab, the remainder were detected by 4–14 labs.A wide range of sample preparation and bioinformatics methods is currently used.A common reference material is essential to enable results to be compared.
Abstract. Murine monoclonal antibodies specific for titin have been elicited using a chicken heart muscle residue as antigen. The three antibodies T 1, T3, and T4 recognize both bands of the titin doublet in immunoblot analysis on polypeptides from chicken breast muscle. In contrast, on chicken cardiac myofibrils two of the antibodies (T 1, T4) react only with the upper band of the doublet indicating immunological differences between heart and skeletal muscle titin. This difference is even more pronounced for rat and mouse. Although all three antibodies react with skeletal muscle titin, T 1 and T4 did not detect heart titin, whereas T3 reacts with this titin both in immunofluorescence microscopy and in immunoblots. Immunofluorescence microscopy of myofibrils and frozen tissues from a variety of vertebrates extends these results and shows that the three antibodies recognize different epitopes. All three titin antibodies decorate at the A
N-Terminal deletion mutants of the plant photoreceptor phytochrome, additionally truncated at two different positions at their C-terminal ends, were expressed both in Escherichia coli and in yeast (Pichia pastoris) and converted into chromoproteins upon chromophore incorporation. The start and end positions of the cDNA employed (phyA from oat) mimic the positions of tryptic cleavage (deletion of the first 64 amino acids, and stop codons after amino acid positions 425 or 595, generating 39-kDa and 59-kDa peptides, respectively). The absorption properties and photochromicity upon redfar-red irradiation of these mutants were compared with their tryptic counterparts derived from native oat phytochrome and with recombinant products possessing intact N-termini, but C-terminal positions identical to those of the corresponding tryptic fragments (45-kDa and 65-kDa peptides). All recombinant 65-kDa and 59-kDa peptides bound the chromophore after expression and showed the appropriate absorption spectra of the P, and the P,, forms. The smaller chromopeptides (45-kDa and 39-kDa) behaved differently depending on the expression system employed. E. coli-derived peptides exhibited a phytochrome-like difference spectrum only when the intact N-terminus was present (45-kDa product). The recombinant 39-kDa peptide from E. coli was incapable of chromophore binding whereas the identical peptide sequence expressed by fl pastoris formed a chromoprotein with phycocyanobilin. This recombinant phytochrome fragment exhibited a difference spectrum (Pr-P,) with an even larger P, absorption band than the comparable tryptic 39-kDa fragment. Selectivity of chromophore incorporation and spectral properties suggest that interactions between protein domains of phytochrome control the protein folding and the PJP,, absorption characteristics. Evidently, trypsin digestion down to the 39-kDa fragment affects protein conformation also in terms of P, conservation.
Phytochrome DNAs from oat (Avena sativa L.) encoding the full-length 124-kDa polypeptide, a 118-kDa fragment lacking the first 65 amino acids, and two N-terminal fragments of 65 kDa and 45 kDa were subcloned and expressed in Escherichia coli. Reducing the temperature to 25 "C during cell growth and the coexpression of chaperones improved the folding into a functional conformation for most of the polypeptides, and in one case the yield of polypeptides was also enhanced. A maximum yield of reconstitutable apoprotein was obtained by expressing the 65-kDa fragment consisting of 595 amino acids. The apoproteins could be assembled in the dark with phycocyanobilin into photoreversible chromoproteins. The yield of photoreversible pigment could be further increased by far-redhed irradiation cycles, indicating that the presence of the chromophore promotes the correct folding of the binding site. The chromoproteins with an intact N-terminal domain exhibit P, and P, absorption bands, which are blue-shifted relative to the corresponding bands of native phytochrome due to the particular phycocyanobilin structure. The 11 8-kDa fragment, only lacking the 6-kDa N-terminus, exhibits a strong P, band, but only a weak P, absorbance. This indicates an essential role of the front 6-kDa region of the protein in the formation of the far-red absorbing chromophore-protein complex. Otherwise, the C-terminal region seems to be less important for photoreversibility as indicated by the function of the shorter fragments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.