As people learn a new skill, performance changes along two fundamental dimensions: Responses become progressively faster and more accurate. In cognitive psychology, these facets of improvement have typically been addressed by separate classes of theories. Reductions in response time (RT) have usually been addressed by theories of skill acquisition, whereas increases in accuracy have been explained by associative learning theories. To date, relatively little work has examined how changes in RT relate to changes in response accuracy, and whether these changes can be accounted for quantitatively within a single theoretical framework. The current work examines joint changes in accuracy and RT in a probabilistic category learning task. We report a model-based analysis of changes in the shapes of RT distributions for different category responses at the level of individual stimuli over the course of learning. We show that changes in performance are determined solely by changes in the quality of information entering the decision process. We then develop a new model that combines an associative learning front end with a sequential sampling model of the decision process, showing that the model provides a good account of all aspects of the learning data. We conclude by discussing potential extensions of the model and future directions for theoretical development that are opened up by our findings.
The attitude towards one’s own imperfection strongly varies between individuals. Here, we investigated variations in error-related activity depending on two sub-traits of perfectionism, Personal Standard Perfectionism (PSP) and Evaluative Concern Perfectionism (ECP) in a large scale functional magnetic resonance imaging study (N = 75) using a digit-flanker task. Participants with higher PSP scores showed both more post-error slowing and more neural activity in the medial-frontal gyrus including anterior cingulate cortex after errors. Interestingly, high-EC perfectionists with low PSP showed no post-error slowing and the highest activity in the middle frontal gyrus, whereas high-EC perfectionists with high PSP showed the lowest activity in this brain area and more post-error slowing. Our findings are in line with the hypothesis that perfectionists with high concerns but low standards avoid performance monitoring to avoid the worry-inducing nature of detecting personal failure and the anticipation of poor evaluation by others. However, the stronger goal-oriented performance motivation of perfectionists with high concerns and high standards may have led to less avoidance of error processing and a more intense involvement with the imperfect behaviour, which is essential for improving future performance.
This commentary discusses the paper by Sherman, Seth and Kanai (2016), published in The Journal of Neuroscience, who report a neural signature of confidence in the Right Inferior Frontal Gyrus (rIFG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.