Periconceptional folic acid supplementation may reduce the risk of cleft lip with or without cleft palate (CL(P)). Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene reduce availability of 5-methyltetrahydrofolate, the predominant circulating form of folate. To determine the effect of MTHFR C677T and MTHFR A1298C genotypes and haplotypes on CL(P) risk and the interaction with maternal periconceptional dietary folate and folic acid supplement intake, the authors conducted a case-control triad study in the Netherlands (1998-2000) among 179 CL(P) and 204 control families. Infant and parental MTHFR C677T and MTHFR A1298C genotypes and haplotypes were not associated with CL(P) risk in the case-control and transmission disequilibrium test analyses. Mothers carrying the MTHFR 677TT genotype and who either did not use folic acid supplements periconceptionally or had a low dietary folate intake, or both, had an increased risk of delivering a CL(P) child (odds ratio (OR) = 5.9, 95% confidence interval (CI): 1.1, 30.9; OR = 2.8, 95% CI: 0.7, 10.5; OR = 10.0, 95% CI: 1.3, 79.1, respectively). No supplement use, low dietary folate intake, and maternal MTHFR 1298CC genotype increased the risk of CL(P) offspring almost sevenfold (OR = 6.5, 95% CI: 1.4, 30.2). Thus, the detrimental effect of low periconceptional folate intake on the risk of giving birth to a CL(P) child was more pronounced in mothers with the MTHFR 677TT or MTHFR 1298CC genotype.
In the literature, some controversy still exists about the normal and abnormal development of the human anorectum. Therefore, a three‐dimensional and histological study was performed on human embryos. In early anorectal development (≤49 days postfertilization), the cloaca plays a crucial role, separated from the amniotic cavity by its cloacal membrane. In the cloaca, the yolk sac/primitive hindgut and allantois/primitive urogenital sinus enter. During the embryonic caudal folding process, incorporation of these structures occurs, including their surrounding extraembryonic mesoderm, which fuses to form the urorectal septum. Consequently, this septum does not grow in the direction of the cloacal membrane, and fusion of these structures is likewise never observed. The cloaca remains as such until the cloacal membrane ruptures by apoptotic cell death. The dorsal part of the cloaca then becomes part of the amniotic cavity, and is by no means involved in the development of the anorectum. The tip of the urorectal septum will become the perineal area. Soon after rupture of the cloacal membrane, during late anorectal development (≥49 days postfertilization), a secondary occlusion of the anorectal canal occurs, first due to adhesion, followed by formation of an epithelial “plug” at the level of the anal orifice. Recanalization, by apoptotic cell death, of this secondary occluded anal orifice occurs later during development. Based on these embryological observations, congenital anorectal malformations with an abnormal communication to the exterior are best explained as early embryonic defects. The abnormal communications, usually called fistulae, should be regarded as ectopic anal orifices. Anorectal malformations with the anus in normal position are best explained as late embryonic defects. Teratology 57:70–78, 1998. © 1998 Wiley‐Liss, Inc.
Prenatal counselling regarding prognosis and risk of chromosomal defects should be tailored to cleft category, and more importantly to the presence/absence of associated anomalies. Irrespective of cleft category, clinicians should advise invasive genetic testing if associated anomalies are seen prenatally. In the absence of associated anomalies, prenatal conventional karyotyping is not recommended in CL, although array comparative genomic hybridisation should be considered. In presumed isolated CLP or CP, prenatal invasive testing, preferably by array based methods, is recommended.
The distribution of phospholipids across the two leaflets of the plasma membrane is important for many cellular processes including phagocytosis and hemostasis. In the present study we investigated the in vivo plasma membrane distribution of the aminophospholipid phosphatidylserine in mouse embryos with a novel technique employing Annexin V, a Ca 2+ dependent phosphatidylserine binding protein, conjugated to fluorescein isothiocyanate and biotin. Annexin V directly applied to cryostat sections labeled the plasma membrane of all cells at the interface. In contrast, Annexin V injected intracardially into viable mouse embryos labeled almost exclusively apoptotic cells. These apoptotic cells were visible in all tissues and derived from all germ layers. Our experiments demonstrate that phosphatidylserine is asymmetrically distributed between the two leaflets of the plasma membrane in virtually all cell types in vivo and that this asymmetry is lost early during apoptosis.
Exposure of the aminophospholipid phosphatidylserine at the outer leaflet of the plasma membrane by apoptotic cells can trigger phagocytic removal of these dying cells. This functionality of phosphatidylserine exposure in the process of phagocytosis is indicated by in vitro studies of mammalian and insect phagocytes. We have studied the in vivo distribution of cell-surface exposed phosphatidylserine by injecting biotinylated Annexin V, a Ca2+ -dependent phosphatidyl-serine binding protein, into viable mouse and chick embryos and Drosophila pupae. The apparent binding of Annexin V to cells with a morphology which is characteristic of apoptosis and which was present in regions of developmental cell death indicates that phosphatidylserine exposure by apoptotic cells is a phylogenetically conserved mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.