Summary Thresholds are widespread in origin of life scenarios, from the emergence of chirality, to the appearance of vesicles, of autocatalysis, all the way up to Darwinian evolution. Here, we analyze the “error threshold,” which poses a condition for sustaining polymer replication, and generalize the threshold approach to other properties of prebiotic systems. Thresholds provide theoretical predictions, prescribe experimental tests, and integrate interdisciplinary knowledge. The coupling between systems and their environment determines how thresholds can be crossed, leading to different categories of prebiotic transitions. Articulating multiple thresholds reveals evolutionary properties in prebiotic scenarios. Overall, thresholds indicate how to assess, revise, and compare origin of life scenarios.
What is philosophy of science? Numerous manuals, anthologies, and essays provide carefully reconstructed vantage points on the discipline that have been gained through expert and piecemeal historical analyses. In this article, we address the question from a complementary perspective: we target the content of one major journal in the field-Philosophy of Science-and apply unsupervised text-mining methods to its complete corpus, from its start in 1934 until 2015. By running topic-modeling algorithms over the full-text corpus, we identified 126 key research topics that span 82 years. We also tracked those topics' evolution and fluctuating significance over time in the journal articles. Our results concur with and document known and lesser-known episodes in the philosophy of science, including the rise and fall of logic and language-related topics, the relative stability of a metaphysical and ontological questioning (space and time, causation, natural kinds, realism), the significance of epistemological issues about the nature of scientific knowledge, and the rise of a recent philosophy of biology and other trends. These analyses exemplify how computational text-mining methods can be used to provide an empirical large-scale and data-driven perspective on the history of philosophy of science that is complementary to other current historical approaches.
Do trees of life have roots? What do these roots look like? In this contribution, I argue that research on the origins of life might offer glimpses on the topology of these very roots. More specifically, I argue (1) that the roots of the tree of life go well below the level of the commonly mentioned 'ancestral organisms' down into the level of much simpler, minimally living entities that might be referred to as 'protoliving systems', and (2) that further below, a system of roots gradually dissolves into non-living matter along several functional dimensions. In between non-living and living matter, one finds physico-chemical systems that I propose to characterize by a 'lifeness signature'. In turn, this 'lifeness signature' might also account for a diverse range of biochemical entities that are found to be 'less-than-living' yet 'more-than-nonliving'.
The concept of "life" certainly is of some use to distinguish birds and beavers from water and stones. This pragmatic usefulness has led to its construal as a categorical predicate that can sift out living entities from non-living ones depending on their possessing specific properties-reproduction, metabolism, evolvability etc. In this paper, we argue against this binary construal of life. Using text-mining methods across over 30,000 scientific articles, we defend instead a degrees-of-life view and show how these methods can contribute to experimental philosophy of science and concept explication. We apply topic-modeling algorithms to identify which specific properties are attributed to a target set of entities (bacteria, archaea, viruses, prions, plasmids, phages and the molecule of adenine). Eight major clusters of properties were identified together with their relative relevance for each target entity (two that relate to metabolism and catalysis, one to genetics, one to evolvability, one to structure, and-rather unexpectedly-three that concern interactions with the environment broadly construed). While aligning with intuitions-for instance about viruses being less alive than bacteria-these quantitative results also reveal differential degrees of performance that have so far remained elusive or overlooked. Taken together, these analyses provide a conceptual "lifeness space" that makes it possible to move away from a categorical construal of life by empirically assessing the relative lifeness of more-or-less alive entities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.