A practical quantum computer must not merely store information, but also process it. To prevent errors introduced by noise from multiplying and spreading, a fault-tolerant computational architecture is required. Current experiments are taking the first steps toward noise-resilient logical qubits. But to convert these quantum devices from memories to processors, it is necessary to specify how a universal set of gates is performed on them. The leading proposals for doing so, such as magic-state distillation and colour-code techniques, have high resource demands. Alternative schemes, such as those that use high-dimensional quantum codes in a modular architecture, have potential benefits, but need to be explored further.
The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit in an oscillator has recently been followed by cat-and binomial-code proposals. Numerically optimized codes have also been proposed, and we introduce codes of this type here. These codes have yet to be compared using the same error model; we provide such a comparison by determining the entanglement fidelity of all codes with respect to the bosonic pure-loss channel (i.e., photon loss) after the optimal recovery operation. We then compare achievable communication rates of the combined encoding-error-recovery channel by calculating the channel's hashing bound for each code. Cat and binomial codes perform similarly, with binomial codes outperforming cat codes at small loss rates. Despite not being designed to protect against the pure-loss channel, GKP codes significantly outperform all other codes for most values of the loss rate. We show that the performance of GKP and some binomial codes increases monotonically with increasing average photon number of the codes. In order to corroborate our numerical evidence of the cat-binomial-GKP order of performance occurring at small loss rates, we analytically evaluate the quantum error-correction conditions of those codes. For GKP codes, we find an essential singularity in the entanglement fidelity in the limit of vanishing loss rate. In addition to comparing the codes, we draw parallels between binomial codes and discrete-variable systems. First, we characterize one-and two-mode binomial as well as multiqubit permutation-invariant codes in terms of spin-coherent states. Such a characterization allows us to introduce check operators and error-correction procedures for binomial codes. Second, we introduce a generalization of spin-coherent states, extending our characterization to qudit binomial codes and yielding a multiqudit code.
We examine the performance of the single-mode Gottesman-Kitaev-Preskill (GKP) code and its concatenation with the toric code for a noise model of Gaussian shifts, or displacement errors. We show how one can optimize the tracking of errors in repeated noisy error correction for the GKP code. We do this by examining the maximum-likelihood problem for this setting and its mapping onto a 1D Euclidean path-integral modeling a particle in a random cosine potential. We demonstrate the efficiency of a minimum-energy decoding strategy as a proxy for the path integral evaluation. In the second part of this paper, we analyze and numerically assess the concatenation of the GKP code with the toric code. When toric code measurements and GKP error correction measurements are perfect, we find that by using GKP error information the toric code threshold improves from 10% to 14%. When only the GKP error correction measurements are perfect we observe a threshold at 6%.In the more realistic setting when all error information is noisy, we show how to represent the maximum likelihood decoding problem for the toric-GKP code as a 3D compact QED model in the presence of a quenched random gauge field, an extension of the random-plaquette gauge model for the toric code. We present a new decoder for this problem which shows the existence of a noise threshold at shifterror standard deviation σ 0 ≈ 0.243 for toric code measurements, data errors and GKP ancilla errors. If the errors only come from having imperfect GKP states, this corresponds to states with just 4 photons or more.Our last result is a no-go result for linear oscillator codes, encoding oscillators into oscillators. For the Gaussian displacement error model, we prove that encoding corresponds to squeezing the shift errors. This shows that linear oscillator codes are useless for quantum information protection against Gaussian shift errors. a spokesperson: c.vuillot@tudelft.nl arXiv:1810.00047v2 [quant-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.