The ability to control nanostructure shape and dimensions presents opportunities to design materials in which their macroscopic properties are dependent upon the nature of the nanoparticle. Although particle morphology has been recognized as a crucial parameter, the exploitation of the potential shape-dependent properties has, to date, been limited. Herein, we demonstrate that nanoparticle shape is a critical consideration in the determination of nanocomposite hydrogel properties. Using translationally relevant calcium-alginate hydrogels, we show that the use of poly(L-lactide)-based nanoparticles with platelet morphology as an adhesive results in a significant enhancement of adhesion over nanoparticle glues comprised of spherical or cylindrical micelles. Furthermore, gel nanocomposites containing platelets showed an enhanced resistance to breaking under strain compared to their spherical and cylindrical counterparts. This study opens the doors to a change in direction in the field of gel nanocomposites, where nanoparticle shape plays an important role in tuning mechanical properties.
Although matrix metalloproteinases (MMPs) are increasingly being implicated in several pathologies of the nervous system, it is not yet clear what role they play in normal neurobiological processes. We review the expression of extracellular matrix (ECM) components as well as MMPs and tissue inhibitors of metalloproteinases (TIMPs) in the peripheral nervous system. We explore the expression of certain MMPs and the four TIMPs at the mRNA level in the postnatal mouse sciatic nerve. In addition, we have used substrate gel and in situ zymography to determine levels of MMP-2 and -9 and TIMP activity in rat sciatic nerve after crush and during regeneration. A rapid and transient increase in MMP-9 localised at and immediately distal to the site of injury was observed, whereas an increase in MMP-2 activity was delayed, prolonged, and extended proximal and distal to the injury site. This activity coincides with periods of axonal elongation, suggesting that it could act to facilitate axonal extension along the nerve matrix. We also detected multiple species of gelatinolytic inhibitory activity, including TIMP-1 and -3 in control and injured nerve. These activities probably act to prevent uncontrolled gelatinolytic activity, maintaining nerve integrity at the level essential for axonal regrowth.
Because of their crucial impact on our perception of beauty, eyelashes constitute a prime target for the cosmetic industry. However, when compared with other hair shafts and the mini-organs that produce them [eyelash hair follicles (ELHFs)], knowledge on the biology underlying growth and pigmentation of eyelashes is still rudimentary. This is due in part to the extremely restricted availability of human ELHFs for experimental study, underappreciation of their important sensory and protective functions and insufficient interest in understanding why they are distinct from scalp hair follicles (HFs) (e.g. ELHFs produce shorter hair shafts, do not possess an arrector pili muscle, have a shorter hair cycle and undergo greying significantly later than scalp HFs). Here we synthesize the limited current knowledge on the biology of ELHFs, in humans and other species, their role in health and disease, the known similarities with and differences from other HF populations, and their intrinsic interethnic variations. We define major open questions in the biology of these intriguing mini-organs and conclude by proposing future research directions. These include dissecting the molecular and cellular mechanisms that underlie trichomegaly and the development of in vitro models in order to interrogate the distinct molecular controls of ELHF growth, cycling and pigmentation and to probe novel strategies for the therapeutic and cosmetic manipulation of ELHFs beyond prostaglandin receptor stimulation.
Both protease- and reactive oxygen species (ROS)-mediated proteolysis are thought to be key effectors of tissue remodeling. We have previously shown that comparison of amino acid composition can predict the differential susceptibilities of proteins to photo-oxidation. However, predicting protein susceptibility to endogenous proteases remains challenging. Here, we aim to develop bioinformatics tools to (i) predict cleavage site locations (and hence putative protein susceptibilities) and (ii) compare the predicted vulnerabilities of skin proteins to protease- and ROS-mediated proteolysis. The first goal of this study was to experimentally evaluate the ability of existing protease cleavage site prediction models (PROSPER and DeepCleave) to identify experimentally determined MMP9 cleavage sites in two purified proteins and in a complex human dermal fibroblast-derived extracellular matrix (ECM) proteome. We subsequently developed deep bidirectional recurrent neural network (BRNN) models to predict cleavage sites for 14 tissue proteases. The predictions of the new models were tested against experimental datasets and combined with amino acid composition analysis (to predict ultraviolet radiation (UVR)/ROS susceptibility) in a new web app: the Manchester proteome susceptibility calculator (MPSC). The BRNN models performed better in predicting cleavage sites in native dermal ECM proteins than existing models (DeepCleave and PROSPER), and application of MPSC to the skin proteome suggests that: compared with the elastic fiber network, fibrillar collagens may be susceptible primarily to protease-mediated proteolysis. We also identify additional putative targets of oxidative damage (dermatopontin, fibulins and defensins) and protease action (laminins and nidogen). MPSC has the potential to identify potential targets of proteolysis in disparate tissues and disease states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.