SummaryBackgroundPrevious preclinical research has shown that extracorporeal devices can be used to enhance the delivery and distribution of systemically administered anticancer drugs, resulting in increased intratumoural concentrations. We aimed to assess the safety and feasibility of targeted release and enhanced delivery of doxorubicin to solid tumours from thermosensitive liposomes triggered by mild hyperthermia, induced non-invasively by focused ultrasound.MethodsWe did an open-label, single-centre, phase 1 trial in a single UK hospital. Adult patients (aged ≥18 years) with unresectable and non-ablatable primary or secondary liver tumours of any histological subtype were considered for the study. Patients received a single intravenous infusion (50 mg/m2) of lyso-thermosensitive liposomal doxorubicin (LTLD), followed by extracorporeal focused ultrasound exposure of a single target liver tumour. The trial had two parts: in part I, patients had a real-time thermometry device implanted intratumourally, whereas patients in part II proceeded without thermometry and we used a patient-specific model to predict optimal exposure parameters. We assessed tumour biopsies obtained before and after focused ultrasound exposure for doxorubicin concentration and distribution. The primary endpoint was at least a doubling of total intratumoural doxorubicin concentration in at least half of the patients treated, on an intention-to-treat basis. This study is registered with ClinicalTrials.gov, number NCT02181075, and is now closed to recruitment.FindingsBetween March 13, 2015, and March 27, 2017, ten patients were enrolled in the study (six patients in part I and four in part II), and received a dose of LTLD followed by focused ultrasound exposure. The treatment resulted in an average increase of 3·7 times in intratumoural biopsy doxorubicin concentrations, from an estimate of 2·34 μg/g (SD 0·93) immediately after drug infusion to 8·56 μg/g (5·69) after focused ultrasound. Increases of two to ten times were observed in seven (70%) of ten patients, satisfying the primary endpoint. Serious adverse events registered were expected grade 4 transient neutropenia in five patients and prolonged hospital stay due to unexpected grade 1 confusion in one patient. Grade 3–4 adverse events recorded were neutropenia (grade 3 in one patient and grade 4 in five patients), and grade 3 anaemia in one patient. No treatment-related deaths occurred.InterpretationThe combined treatment of LTLD and non-invasive focused ultrasound hyperthermia in this study seemed to be clinically feasible, safe, and able to enhance intratumoural drug delivery, providing targeted chemo-ablative response in human liver tumours that were refractory to standard chemotherapy.FundingOxford Biomedical Research Centre, National Institute for Health Research.
Targeted drug delivery under image guidance is gaining more interest in the drug-delivery field. The use of microbubbles as contrast agents in diagnostic ultrasound provides new opportunities in noninvasive image-guided drug delivery. In the present study, the imaging and therapeutic properties of novel doxorubicin liposome-loaded microbubbles are evaluated. The results showed that at scanning settings (1.7 MHz and mechanical index 0.2), these microbubbles scatter sufficient signal for nonlinear ultrasound imaging and can thus be imaged in real time and be tracked in vivo. In vitro therapeutic evaluation showed that ultrasound at 1 MHz and pressures up to 600 kPa in combination with the doxorubicin liposomeloaded microbubbles induced 4-fold decrease of cell viability compared with treatment with free doxorubicin or doxorubicin liposome-loaded microbubbles alone. The therapeutic effectiveness is correlated to an ultrasound-triggered release of doxorubicin from the liposomes and an enhanced uptake of the free doxorubicin by glioblastoma cells. The results obtained demonstrate that the combination of ultrasound and the doxorubicin liposome-loaded microbubbles can provide a new method of noninvasive image-guided drug delivery.
Mesoporous silica nanoparticles have been reported as suitable drug carriers, but their successful delivery to target tissues following systemic administration remains a challenge. In the present work, ultrasound-induced inertial cavitation was evaluated as a mechanism to promote their extravasation in a flow-through tissue-mimicking agarose phantom. Two different ultrasound frequencies, 0.5 or 1.6 MHz, with pressures in the range 0.5-4 MPa were used to drive cavitation activity which was detected in real time. The optimal ultrasound conditions identified were employed to deliver dye-loaded nanoparticles as a model for drug-loaded nanocarriers, with the level of extravasation evaluated by fluorescence microscopy. The same nanoparticles were then co-injected with submicrometric polymeric cavitation nuclei as a means to promote cavitation activity and decrease the required in-situ acoustic pressure required to attain extravasation. The overall cavitation energy and penetration of the combination was compared to mesoporous silica nanoparticles alone. The results of the present work 2 suggest that combining mesoporous silica nanocarriers and submcrometric cavitation nuclei may help enhance the extravasation of the nanocarrier, thus enabling subsequent sustained drug release to happen from those particles already embedded in the tumour tissue.
To demonstrate the feasibility and safety of using focused ultrasound planning models to determine the treatment parameters needed to deliver volumetric mild hyperthermia for targeted drug delivery without real-time thermometry. Materials and Methods: This study was part of the Targeted Doxorubicin, or TARDOX, phase I prospective trial of focused ultrasound-mediated, hyperthermia-triggered drug delivery to solid liver tumors (ClinicalTrials.gov identifier NCT02181075). Ten participants (age range, 49-68 years; average age, 60 years; four women) were treated from March 2015 to March 2017 by using a clinically approved focused ultrasound system to release doxorubicin from lyso-thermosensitive liposomes. Ultrasonic heating of target tumors (treated volume: 11-73 cm 3 [mean 6 standard deviation, 50 cm 3 6 26]) was monitored in six participants by using a minimally invasive temperature sensor; four participants were treated without real-time thermometry. For all participants, CT images were used with a patient-specific hyperthermia model to define focused ultrasound treatment plans. Feasibility was assessed by comparing model-prescribed focused ultrasound powers to those implemented for treatment. Safety was assessed by evaluating MR images and biopsy specimens for evidence of thermal ablation and monitoring adverse events. Results: The mean difference between predicted and implemented treatment powers was 20.1 W 6 17.7 (n = 10). No evidence of focused ultrasound-related adverse effects, including thermal ablation, was found. Conclusion: In this 10-participant study, the authors confirmed the feasibility of using focused ultrasound-mediated hyperthermia planning models to define treatment parameters that safely enabled targeted, noninvasive drug delivery to liver tumors while monitored with B-mode guidance and without real-time thermometry. Pubished under a CC BY 4.0 license.
The efficient penetration of drugs into tumors is a major challenge that remains unmet. Reported herein is a strategy to promote extravasation and enhanced penetration using inertial cavitation initiated by focused ultrasound and cone-shaped gold nanoparticles that entrap gas nanobubbles. The cones are capable of initiating inertial cavitation under pressures and frequencies achievable with existing clinical ultrasound systems and of promoting extravasation and delivery of a model large therapeutic molecule in an in vitro tissue mimicking flow phantom, achieving penetration depths in excess of 2 mm. Ease of functionalization and intrinsic imaging capabilities provide gold with significant advantages as a material for biomedical applications. The cones show neither cytotoxicity in Michigan Cancer Foundation (MCF)-7 cells nor hemolytic activity in human blood at clinically relevant concentrations and are found to be colloidally stable for at least 5 d at 37 °C and several months at 4 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.