We argue that a description of supersymmetric extended objects from a unified geometric point of view requires an enlargement of superspace. To this aim we study in a systematic way how superspace groups and algebras arise from Grassmann spinors when these are assumed to be the only primary entities. In the process, we recover generalized spacetime superalgebras and extensions of supersymmetry found earlier. The enlargement of ordinary superspace with new parameters gives rise to extended superspace groups, on which manifestly supersymmetric actions may be constructed for various types of p-branes, including D-branes (given by Chevalley-Eilenberg cocycles) with their Born-Infeld fields. This results in a field/extended superspace democracy for superbranes: all brane fields appear as pull-backs from a suitable target superspace. Our approach also clarifies some facts concerning the origin of the central charges for the different p-branes.Comment: Latex file, 31 pgs. Version to appear in NP
Abstract. We examine the equilibrium conditions of a curve in space when a local energy penalty is associated with its extrinsic geometrical state characterized by its curvature and torsion. To do this we tailor the theory of deformations to the Frenet-Serret frame of the curve. The Euler-Lagrange equations describing equilibrium are obtained; Noether's theorem is exploited to identify the constants of integration of these equations as the Casimirs of the euclidean group in three dimensions. While this system appears not to be integrable in general, it is in various limits of interest. Let the energy density be given as some function of the curvature and torsion, f (κ, τ ). If f is a linear function of either of its arguments but otherwise arbitrary, we claim that the first integral associated with rotational invariance permits the torsion τ to be expressed as the solution of an algebraic equation in terms of the bending curvature, κ. The first integral associated with translational invariance can then be cast as a quadrature for κ or for τ .
We apply Lie algebra deformation theory to the problem of identifying the stable form of the quantum relativistic kinematical algebra. As a warm up, given Galileo's conception of spacetime as input, some modest computer code we wrote zeroes in on the Poincaré-plus-Heisenberg algebra in about a minute. Further ahead, along the same path, lies a three dimensional deformation space, with an instability double cone through its origin. We give physical as well as geometrical arguments supporting our view that moment, rather than position operators, should enter as generators in the Lie algebra. With this identification, the deformation parameters give rise to invariant length and mass scales. Moreover, standard quantum relativistic kinematics of massive, spinless particles corresponds to non-commuting moment operators, a purely quantum effect that bears no relation to spacetime non-commutativity, in sharp contrast to earlier interpretations. 2 C. Chryssomalakos and E. Okon
Abstract:We determine the equilibria of a rigid loop in the plane, subject to the constraints of fixed length and fixed enclosed area. Rigidity is characterized by an energy functional quadratic in the curvature of the loop. We find that the area constraint gives rise to equilibria with remarkable geometrical properties: not only can the Euler-Lagrange equation be integrated to provide a quadrature for the curvature but, in addition, the embedding itself can be expressed as a local function of the curvature. The configuration space is shown to be essentially one-dimensional, with surprisingly rich structure. Distinct branches of integer-indexed equilibria exhibit self-intersections and bifurcations -a gallery of plots is provided to highlight these findings. Perturbations connecting equilibria are shown to satisfy a first order ODE which is readily solved. We also obtain analytical expressions for the energy as a function of the area in some limiting regimes.
Abstract:We show that the algebra of the recently proposed Triply Special Relativity can be brought to a linear (i.e., Lie) form by a correct identification of its generators. The resulting Lie algebra is the stable form proposed by Vilela Mendes a decade ago, itself a reapparition of Yang's algebra, dating from 1947. As a corollary we assure that, within the Lie algebra framework, there is no Quadruply Special Relativity. 2C. Chryssomalakos and E. Okon
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.