In a subtropical climate like that of Taiwan, the high temperature and humid environmental conditions often result in discomfort and health effects for building occupants. With regard to building geometry, the wind environment and thermal comfort assessment, which can enhance energy efficiency and the comfort and health of occupants, both ought to be considered as soon as possible in the design process. In view of the limited comprehensive design evaluation methods and design workflows regarding wind and thermal performance currently available, this research aims to develop an early decision support workflow that includes suggested performance evaluation methods and design optimization processes. The results of our case study show that the building had clear performance results using the proposed evaluation methods, making it easier for architects to understand and compare alternatives. Appropriate analysis and visualization of the results also effectively assisted architects in determining design solutions and making relevant decisions. The methods and results in this article can facilitate performance-based buildings for healthy and energy-efficient built environments.
Multi-layer cavity wall (MCW) systems, which refer to each panel in the structure being made up of two or more layers of lightweight board, have become more widely used. However, unlike the detailed approaches that were available for predicting single-layer cavity walls (SCW), few studies have addressed the MCW involving different layers attached together. In this research, we applied two theoretical models of SCW, analyzed the key parameters and modify to have appropriate application for MCW. The predictive capability of the models was then evaluated by comparing them with results of experiment and commercial software. The results showed that Sharp’s model was suggested only when the thickness of the steel stud of about 0.75 mm. Through modifying the input values of the compliance of steel ( CM), attenuation factor ( F) and the limiting angle of incident (θ L) in Davy’s model, and the prediction of the proposed model showed great consistent with experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.