We study the error landscape of deep linear and nonlinear neural networks with the squared error loss. Minimizing the loss of a deep linear neural network is a nonconvex problem, and despite recent progress, our understanding of this loss surface is still incomplete. For deep linear networks, we present necessary and sufficient conditions for a critical point of the risk function to be a global minimum. Surprisingly, our conditions provide an efficiently checkable test for global optimality, while such tests are typically intractable in nonconvex optimization. We further extend these results to deep nonlinear neural networks and prove similar sufficient conditions for global optimality, albeit in a more limited function space setting.
It is known that Θ(N ) parameters are sufficient for neural networks to memorize arbitrary N input-label pairs. By exploiting depth, we show that Θ(N 2/3 ) parameters suffice to memorize N pairs, under a mild condition on the separation of input points. In particular, deeper networks (even with width 3) are shown to memorize more pairs than shallow networks, which also agrees with the recent line of works on the benefits of depth for function approximation. We also provide empirical results that support our theoretical findings.
Transformer networks use pairwise attention to compute contextual embeddings of inputs, and have redefined the state of the art in many NLP tasks. However, these models suffer from quadratic computational cost in the input sequence length n to compute attention in each layer. This has prompted recent research into faster attention models, with a predominant approach involving sparsifying the connections in the attention layers. While empirically promising for long sequences, fundamental questions remain unanswered: Can sparse transformers approximate any arbitrary sequence-to-sequence function, similar to their dense counterparts? How does the sparsity pattern and the sparsity level affect their performance? In this paper, we address these questions and provide a unifying framework that captures existing sparse attention models. Our analysis proposes sufficient conditions under which we prove that a sparse attention model can universally approximate any sequence-to-sequence function. Surprisingly, our results show the existence of models with only O(n) connections per attention layer that can approximate the same function class as the dense model with n 2 connections. Lastly, we present experiments comparing different patterns/levels of sparsity on standard NLP tasks.
Attention based Transformer architecture has enabled significant advances in the field of natural language processing. In addition to new pre-training techniques, recent improvements crucially rely on working with a relatively larger embedding dimension for tokens. Unfortunately, this leads to models that are prohibitively large to be employed in the downstream tasks. In this paper we identify one of the important factors contributing to the large embedding size requirement. In particular, our analysis highlights that the scaling between the number of heads and the size of each head in the current architecture gives rise to a low-rank bottleneck in attention heads, causing this limitation. We further validate this in our experiments. As a solution we propose to set the head size of an attention unit to input sequence length, and independent of the number of heads, resulting in multi-head attention layers with provably more expressive power. We empirically show that this allows us to train models with a relatively smaller embedding dimension and with better performance scaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.