A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) recently emerged and is rapidly spreading in humans, causing COVID-19 1,2 . A key to tackling this pandemic is to understand the receptor recognition mechanism of the virus, which regulates its infectivity, pathogenesis and host range. SARS-CoV-2 and SARS-CoV recognize the same receptor-angiotensin-converting enzyme 2 (ACE2)-in humans 3,4 . Here we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 (engineered to facilitate crystallization) in complex with ACE2. In comparison with the SARS-CoV RBD, an ACE2-binding ridge in SARS-CoV-2 RBD has a more compact conformation; moreover, several residue changes in the SARS-CoV-2 RBD stabilize two virus-binding hotspots at the RBD-ACE2 interface. These structural features of SARS-CoV-2 RBD increase its ACE2-binding affinity. Additionally, we show that RaTG13, a bat coronavirus that is closely related to SARS-CoV-2, also uses human ACE2 as its receptor. The differences among SARS-CoV-2, SARS-CoV and RaTG13 in ACE2 recognition shed light on the potential animal-to-human transmission of SARS-CoV-2. This study provides guidance for intervention strategies that target receptor recognition by SARS-CoV-2.The sudden emergence and rapid spread of SARS-CoV-2 is endangering global health and economy 1,2 . SARS-CoV-2 has caused many more infections, deaths and economic disruptions than SARS-CoV in 2002 . The origin of SARS-CoV-2 remains unclear. Bats are considered the original source of SARS-CoV-2 because a closely related coronavirus, RaTG13, has been isolated from bats 7 . However, the molecular events that led to the possible bat-to-human transmission of SARS-CoV-2 are unknown. Clinically approved vaccines or drugs that specifically target SARS-CoV-2 are also lacking. Receptor recognition by coronaviruses is an important determinant of viral infectivity, pathogenesis and host range 8,9 . It presents a major target for vaccination and antiviral strategies 10 . Here we elucidate the structural and biochemical mechanisms of receptor recognition by SARS-CoV-2.Receptor recognition by SARS-CoV has been extensively studied. A virus-surface spike protein mediates the entry of coronavirus into host cells. The spike protein of SARS-CoV contains a RBD that specifically recognizes ACE2 as its receptor 3,4 . A series of crystal structures of the SARS-CoV RBD from different strains in complex with ACE2 from different hosts has previously been determined 3,11,12 . These structures showed that SARS-CoV RBD contains a core and a receptor-binding motif (RBM); the RBM mediates contacts with ACE2. The surface of ACE2 contains two virus-binding hotspots that are essential for SARS-CoV binding. Several naturally selected mutations in the SARS-CoV RBM surround these hotspots and regulate the infectivity, pathogenesis, and cross-species and human-to-human transmissions of SARS-CoV 3,11,12 .Because of the sequence similarity between the spike proteins of SARS-CoV and SARS-C...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.