Propolis is a natural substance known to be beneficial for human health and used as a folk medicine in many parts of the world. In this study, phenolic profiles and antioxidant properties of Beijing propolis extracted by different ethanol/water solvents were analyzed. Our results reveal that phenolic compounds and antioxidant properties of propolis extracts were significantly dependent on the concentration of ethanol/water solvents. Totally, 29 phenolic compounds were identified: 12 phenolic acids, 13 flavonoids, and 4 phenolic acid esters. In particular, 75 wt.% ethanol/water solvent may be the best for the highest extraction yield and the strongest antioxidant properties. Caffeic acid, benzyl caffeate, phenethyl caffeate, 5-methoxy pinobanksin, pinobanksin, pinocembrin, pinobanksin-3-O-acetate, chrysin, and galangin were the characteristic compounds of Beijing propolis, and these compounds seem to verify that Beijing propolis may be poplar-type propolis. In addition, the presence of high level of pinobanksin-3-O-acetate in Chinese propolis may be a novel finding, representing one-third of all phenolics.
The chronic infections related to biofilm and intracellular bacteria are always hard to be cured because of their inherent resistance to both antimicrobial agents and host defenses. Herein we develop a facile approach to overcome the above conundrum through phosphatidylcholine-decorated Au nanoparticles loaded with gentamicin (GPA NPs). The nanoparticles were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS) and ultraviolet−visible (UV−vis) absorption spectra which demonstrated that GPA NPs with a diameter of approximately 180 nm were uniform. The loading manner and release behaviors were also investigated. The generated GPA NPs maintained their antibiotic activities against planktonic bacteria, but more effective to damage established biofilms and inhibited biofilm formation of pathogens including Gram-positive and Gram-negative bacteria. In addition, GPA NPs were observed to be nontoxic to RAW 264.7 cells and readily engulfed by the macrophages, which facilitated the killing of intracellular bacteria in infected macrophages. These results suggested GPA NPs might be a promising antibacterial agent for effective treatment of chronic infections due to microbial biofilm and intracellular bacteria.
Inflammatory cells have gained widespread attention because inflammatory diseases increase the risk for many types of cancer. Therefore, it is urgent and important to implement detection and treatment methods for inflammatory cells. Herein, we constructed a theranostic probe with aggregation‐induced emission (AIE) characteristics, in which tetraphenylethene (TPE) was modified with two tyrosine (Tyr) moieties. Owing to the H2O2‐dependent, enzyme‐catalyzed dityrosine formation, Tyr‐containing TPE (TT) molecules crosslink through dityrosine linkages to induce the formation of hydrophobic aggregates, activating the AIE process in inflammatory cells that contain H2O2 and overexpress myeloperoxidase. The emission turn‐on resulting from the crosslinking of TT molecules could be used to distinguish between inflammatory and normal cells. Moreover, the massive TT aggregates induced mitochondria damage and cell apoptosis. This study demonstrates that the H2O2‐responsive peroxidase‐activated AIEgen holds great promise for inflammatory‐cell selective imaging and inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.