Long non-coding RNAs (lncRNAs) play important roles in malignant neoplasia. Indeed, many hallmarks of cancer define that the malignant phenotype of tumor cells are controlled by lncRNAs. Despite a growing number of studies highlighting their importance in cancer, there has been no systematic review of metastasis-associated lncRNAs in various cancer types. Accordingly, we focus on the key metastasis-related lncRNAs and outline their expression status in cancer tissues by reviewing the previous stuides, in order to summarize the nowadays research achivements for lncRNAs related to cancer metastasis. Medline, EMBASE, as well as PubMed databases were applied to study lncRNAs which were tightly associated with tumor invasion and metastasis. Up to now, a substantial number of lncRNAs have been found to have important biological functions. In this review, according to their various features in cancer, lncRNAs were roughly divided into three categories: promoting tumor invasion and metastasis, negative regulation of tumor metastasis and with dual regulatory roles. The present studies may establish the foundation for both further research on the mechanisms of cancer progression and future lncRNA-based clinical applications.
MicroRNAs (miRNAs), which are small single-stranded RNA molecules composed of 18-23 nucleotides, act as oncogenes or tumor suppressor genes playing important roles in tumor formation, infiltration and metastasis. Subsequently, miRNAs expression contributes to cancer diagnosis and prognosis. Gastric cancer currently has high morbidity and mortality among all malignant tumors, yet it lacks early specific diagnostic markers and effective treatments. In gastric cancer, many studies have detected abnormal expression forms of miRNAs and confirmed their involvement in its tumorigenesis, progression, invasion and metastasis. They may become valuable diagnostic markers and therapeutic targets for gastric cancer. Studying the role of miRNAs in gastric cancer and its relationship with diagnostic and prognostic parameters might help to improve the sensitivity of diagnosis as well as the efficacy of gastric cancer treatment. This review aims to highlight the advancements which might provide new methods for early clinical diagnosis and effective therapeutic options, along with predict response to treatment for gastric cancer.
This study aimed to explore the pattern of accumulation of some of main heavy metals in blood and various organs of rats after exposed to the atmospheric fine particulate matter (PM2.5). Rats were randomly divided into control and three treatment groups (tracheal perfusion with 10 mg/kg, 20 mg/kg and 40 mg/kg of PM2.5 suspension liquid, respectively). Whole blood and the lung, liver, kidney, and cerebral cortex were harvested after rats were treated and sacrificed. The used heavy metals were detected using inductively coupled plasma-mass spectrometry (ICP-MS) instrument. As results, Lead was increased in the liver, lung and cerebral cortex and the level of manganese was significantly elevated in the liver and cerebral cortex in PM2.5 treated rats. Besides, arsenic was prominently enriched both in cerebral cortex and in blood, and so did the aluminum in the cerebral cortex and the copper in the liver. However, cadmium, chromium and nickel have shown no difference between the control group and the three PM2.5 treated groups. Following the exposure of PM2.5, different heavy metals are preferentially accumulated in different body tissues.
As an important medium of intercellular communication, exosomes play an important role in information transmission between tumor cells and their microenvironment. Tumor metastasis is a serious influencing factor for poor treatment effect and shortened survival. Lung cancer is a major malignant tumor that seriously threatens human health. The study of the underlying mechanisms of exosomes in tumor genesis and development may provide new ideas for early and effective diagnosis and treatment of lung cancer metastasis. Many studies have shown that tumor-derived exosomes promote lung cancer development through a number of processes. By promoting epithelial–mesenchymal transition of tumor cells, they induce angiogenesis, establishment of the pretransfer microenvironment, and immune escape. This understanding enables researchers to better understand the mechanism of lung cancer metastasis and explore new treatments for clinical application. In this article, we systematically review current research progress of tumor-derived exosomes in metastasis of lung cancer. Although positive progress has been made toward understanding the mechanism of exosomes in lung cancer metastasis, systematic basic research and clinical translational research remains lacking and are needed to translate our scientific understanding toward applications in the clinical diagnosis and treatment of lung cancer metastasis in the near future.
Accompanied with the broad application of interventional therapy, the incidence of acute kidney injury (AKI) has been recently increasing in clinical renal medicine. The pathogenesis of AKI is diverse and complex. In the context of the requirements for the diagnosis and treatment of a renal disorder, a large number of studies have explored biological markers and their usefulness to the early diagnosis and treatment of AKI, including glomerular injury, renal tubular injury, and others. These biomarkers provide an important basis for early monitoring of AKI, but are still not quite sufficient. More ideal biomarkers are needed to be identified. Therefore, future studies are necessary to explore more effective biomarkers for AKI clinical practice, which would play an important role in the early diagnosis and intervention treatment of AKI. This review summarizes the important biomarkers identified by previous studies and aims to highlight the advancements that might provide new methods for early clinical diagnosis and effective therapeutic options, along with prediction of response to treatment for AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.