Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.
We report a metamaterial which simultaneously possesses a negative bulk modulus and mass density. This metamaterial is a zinc blende structure consisting of one fcc array of bubble-contained-water spheres (BWSs) and another relatively shifted fcc array of rubber-coated-gold spheres (RGSs) in epoxy matrix. The negative bulk modulus and mass density are simultaneously derived from the coexistent monopolar resonances from the embedded BWSs and dipolar resonances from the embedded RGSs. The Poisson ratio of the metamaterial also turns negative near the resonance frequency.
Reflection and refraction of waves occur at the interface between two different media. These two fundamental interfacial wave phenomena form the basis of fabricating various wave components, such as optical lenses. Classical refraction-now referred to as positive refraction-causes the transmitted wave to appear on the opposite side of the interface normal compared to the incident wave. By contrast, negative refraction results in the transmitted wave emerging on the same side of the interface normal. It has been observed in artificial materials, following its theoretical prediction, and has stimulated many applications including super-resolution imaging. In general, reflection is inevitable during the refraction process, but this is often undesirable in designing wave functional devices. Here we report negative refraction of topological surface waves hosted by a Weyl phononic crystal-an acoustic analogue of the recently discovered Weyl semimetals. The interfaces at which this topological negative refraction occurs are one-dimensional edges separating different facets of the crystal. By tailoring the surface terminations of the Weyl phononic crystal, constant-frequency contours of surface acoustic waves can be designed to produce negative refraction at certain interfaces, while positive refraction is realized at different interfaces within the same sample. In contrast to the more familiar behaviour of waves at interfaces, unwanted reflection can be prevented in our crystal, owing to the open nature of the constant-frequency contours, which is a hallmark of the topologically protected surface states in Weyl crystals.
Similar to their optic counterparts, acoustic components are anticipated to flexibly tailor the propagation of sound. However, the practical applications, e.g. for audible sound with large wavelengths, are frequently hampered by the issue of device thickness. Here we present an effective design of metasurface structures that can deflect the transmitted airborne sound in an anomalous way. This flat lens, made of spatially varied coiling-slit subunits, has a thickness of deep subwavelength. By elaborately optimizing its microstructures, the proposed lens exhibits high performance in steering sound wavefronts. Good agreement has been demonstrated experimentally by a sample around the frequency 2.55 kHz, incident with a Gaussian beam at normal or oblique incidence. This study may open new avenues for numerous daily life applications, such as controlling indoor sound effects by decorating rooms with light metasurface walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.