In the spring and summer of 2001, 47 fathers, 48 mothers and 117 children of Iowa farm and non-farm households were recruited to participate in a study investigating take-home pesticide exposure. On two occasions approximately 1 month apart, urine samples from each participant and dust samples from various rooms were collected from each household and were analyzed for atrazine, metolachlor, glyphosate and chlorpyrifos or their metabolites. The adjusted geometric mean (GM) level of the urine metabolite of atrazine was significantly higher in fathers, mothers and children from farm households compared with those from non-farm households (P < or = 0.0001). Urine metabolites of chlorpyrifos were significantly higher in farm fathers (P = 0.02) and marginally higher in farm mothers (P = 0.05) when compared with non-farm fathers and mothers, but metolachlor and glyphosate levels were similar between the two groups. GM levels of the urinary metabolites for chlorpyrifos, metolachlor and glyphosate were not significantly different between farm children and non-farm children. Farm children had significantly higher urinary atrazine and chlorpyrifos levels (P = 0.03 and P = 0.03 respectively) when these pesticides were applied by their fathers prior to sample collection than those of farm children where these pesticides were not recently applied. Urinary metabolite concentration was positively associated with pesticide dust concentration in the homes for all pesticides except atrazine in farm mothers; however, the associations were generally not significant. There were generally good correlations for urinary metabolite levels among members of the same family.
In this study, we characterize the area and personal air concentrations of combustion byproducts produced during controlled residential fires with furnishings common in 21 st century single family structures. Area air measurements were collected from the structure during active fire and overhaul (post suppression) and on the fireground where personnel were operating without any respiratory protection. Personal air measurements were collected from firefighters assigned to fire attack, victim search, overhaul, outside ventilation, and command/pump operator positions. Two different fire attack tactics were conducted for the fires (6 interior and 6 transitional) and exposures were compared between the tactics. For each of the 12 fires, firefighters were paired up to conduct each job assignment, except for overhaul that was conducted by 4 firefighters. Sampled compounds included polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs, e.g., benzene), hydrogen cyanide (HCN), and particulate (area air sampling only). Median personal air concentrations for the attack and search firefighters were generally well above applicable short-term occupational exposure limits, with the exception of HCN measured from search firefighters. Area air concentrations of all measured compounds decreased after suppression. Personal air concentrations of total PAHs and benzene measured from some overhaul firefighters exceeded exposure limits. Median personal air concentrations of HCN (16,300 ppb) exceeded the exposure limit for outside vent firefighters, with maximum levels (72,900 ppb) higher than the immediately dangerous to life and health (IDLH) level. Median air concentrations on the fireground (including particle count) were above background levels and highest when collected downwind of the structure and when ground-level smoke was the heaviest. No statistically significant differences in personal air concentrations were found between the 2 attack tactics. The results underscore the importance of wearing self-contained breathing apparatus when conducting overhaul or outside ventilation activities. Firefighters should also try to establish command upwind of the structure fire, and if this cannot be done, respiratory protection should be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.