Sea ice is an integral part of the earth's climate system because it affects planetary albedo, sea-surface salinity, and the atmosphere–ocean exchange of reactive gases and aerosols. Bromine and iodine chemistry is active at polar sea ice margins with the occurrence of bromine explosions and the biological production of organoiodine from sea ice algae. Satellite measurements demonstrate that concentrations of bromine oxide (BrO) and iodine oxide (IO) decrease over sea ice toward the Antarctic interior. Here we present speciation measurements of bromine and iodine in the TALDICE (TALos Dome Ice CorE) ice core (159°11' E, 72°49' S; 2315 m a.s.l.) spanning the last 215 ky. The Talos Dome ice core is located 250 km inland and is sensitive to marine air masses intruding onto the Antarctic Plateau. Talos Dome bromide (Br−) is positively correlated with temperature and negatively correlated with sodium (Na). Based on the Br−/Na seawater ratio, bromide is depleted in the ice during glacial periods and enriched during interglacial periods. Total iodine, consisting of iodide (I−) and iodate (IO3−), peaks during glacials with lower values during interglacial periods. Although IO3− is considered the most stable iodine species in the atmosphere it was only observed in the TALDICE record during glacial maxima. Sea ice dynamics are arguably the primary driver of halogen fluxes over glacial–interglacial timescales, by altering the distance between the sea ice edge and the Antarctic plateau and by altering the surface area of sea ice available to algal colonization. Based on our results we propose the use of both halogens for examining Antarctic variability of past sea ice extent
Subglacial Lake Whillans (SLW), West Antarctica, is an active component of the subglacial hydrological network located beneath 800 m of ice. The fill and drain behavior of SLW leads to long (years to decades) water residence times relative to those in mountain glacier systems. Here, we present the aqueous geochemistry of the SLW water column and pore waters from a 38-cm-long sediment core. Stable isotopes indicate that the water is primarily sourced from basal-ice melt with a minor contribution from seawater that reaches a maximum of ?6% in pore water at the bottom of the sediment core. Silicate weathering products dominate the crustal (non-seawater) component of lake- and pore-water solutes, and there is evidence for cation exchange processes within the clay-rich lake sediments. The crustal solute component ranges from 6 meq L?1 in lake waters to 17 meq L?1 in the deepest pore waters. The pore-water profiles of the major dissolved ions indicate a more concentrated solute source at depth (>38 cm). The combination of significant seawater and crustal components to SLW lake and sediment pore waters in concert with ion exchange processes result in a weathering regime that contrasts with other subglacial systems. The results also indicate cycling of marine water sourced from the sediments back to the ocean during lake drainage events.publishersversionPeer reviewe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.