Systems composed of soft matter (e.g., liquids, polymers, foams, gels, colloids, and most biological materials) are ubiquitous in science and engineering, but molecular simulations of such systems pose particular computational challenges, requiring time and/or ensemble-averaged data to be collected over long simulation trajectories for property evaluation. Performing a molecular simulation of a soft matter system involves multiple steps, which have traditionally been performed by researchers in a "bespoke" fashion, resulting in many published soft matter simulations not being reproducible based on the information provided in the publications. To address the issue of reproducibility and to provide tools for computational screening, we have been developing the open-source Molecular Simulation and Design Framework (MoSDeF) software suite.In this paper, we propose a set of principles to create Transparent, Reproducible, Usable by others, and Extensible (TRUE) molecular simulations. MoSDeF facilitates the publication and dissemination of TRUE simulations by automating many of the critical steps in molecular simulation, thus enhancing their reproducibility. We provide several examples of TRUE molecular simulations: All of the steps involved in creating, running and extracting properties from the simulations are distributed on open-source platforms (within MoSDeF and on GitHub), thus meeting the definition of TRUE simulations.
Molecular simulation has emerged as an important sub-field of chemical
engineering, due in no small part to the leadership of Keith Gubbins. A
characteristic of the chemical engineering molecular simulation
community is the commitment to freely share simulation codes and other
key software components required to perform a molecular simulation under
open-source licenses and distribution on public repositories such as
GitHub. Here we provide an overview of open-source molecular modeling
software in Chemical Engineering, with focus on the Molecular Simulation
Design Framework (MoSDeF). MoSDeF is an open-source Python software
stack that enables facile use of multiple open-source molecular
simulation engines, while at the same time ensuring maximum
reproducibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.