Identification and size characterization of surface pockets and occluded cavities are initial steps in protein structurebased ligand design. A new program, CAST, for automatically locating and measuring protein pockets and cavities, is based on precise computational geometry methods, including alpha shape and discrete flow theory. CAST identifies and measures pockets and pocket mouth openings, as well as cavities. The program specifies the atoms lining pockets, pocket openings, and buried cavities; the volume and area of pockets and cavities; and the area and circumference of mouth openings. CAST analysis of over 100 proteins has been carried out; proteins examined include a set of SI monomeric enzyme-ligand structures, several elastase-inhibitor complexes, the pockets and cavities in protein crystal structures and quantifying their size. The method is a computational geometry treatment of complex shapes, based on alpha shape and discrete flow theory, and a related suite of programs,
In native proteins, buried, labile protons undergo isotope exchange with solvent hydrogens, but the kinetics of exchange are markedly slower than in unfolded polypeptides. This indicates that, whereas buried protein atoms are shielded from solvent, the protein fluctuates around the time average structure and occasionally exposes buried sites to solvent. Generally, hydrogen exchange studies are designed to characterize the nature of the fluctuations between conformational substates, to monitor the shift in conformational equilibria among protein substates due to ligand binding or other factors, or to monitor the major cooperative denaturation transition. In this article, we review the recent reports of hydrogen exchange in proteins, focusing on recent advances in methodology, especially with regard to the implications of the results for the mechanism of hydrogen exchange in folded proteins.
A database of hydrogen-deuterium exchange results has been compiled for proteins for which there are published rates of out-exchange in the native state, protection against exchange during folding, and out-exchange in partially folded forms. The question of whether the slow exchange core is the folding core~Woodward C, 1993, Trends Biochem Sci 18:359-360! is reexamined in a detailed comparison of the specific amide protons~NHs! and the elements of secondary structure on which they are located. For each pulsed exchange or competition experiment, probe NHs are shown explicitly; the large number and broad distribution of probe NHs support the validity of comparing out-exchange with pulsed-exchange0competition experiments. There is a strong tendency for the same elements of secondary structure to carry NHs most protected in the native state, NHs first protected during folding, and NHs most protected in partially folded species. There is not a one-to-one correspondence of individual NHs. Proteins for which there are published data for native state out-exchange and f values are also reviewed. The elements of secondary structure containing the slowest exchanging NHs in native proteins tend to contain side chains with high f values or be connected to a turn0loop with high f values. A definition for a protein core is proposed, and the implications for protein folding are discussed. Apparently, during folding and in the native state, nonlocal interactions between core sequences are favored more than other possible nonlocal interactions. Other studies of partially folded bovine pancreatic trypsin inhibitor~Barbar E, Barany G, Woodward C, 1995, Biochemistry 34:11423-11434; Barber E, Hare M, Daragan V, Barany G, Woodward C, 1998, Biochemistry 37:7822-7833!, suggest that developing cores have site-specific energy barriers between microstates, one disordered, and the other~s! more ordered.Keywords: hydrogen exchange; NMR; protein folding; slow exchange core In native proteins, the group of backbone amide hydrogens slowest to out-exchange by a folded state mechanism tend to cluster in mutually packed elements of secondary structure; these define a submolecular domain we call the slow exchange core. Slow exchange core elements usually contain NHs protected from exchange early during folding; apparently, the regions of the protein most resistant to exchange in the native state are also the regions most likely to favor organized structure early in folding. We proposed that "the slow exchange core is the folding core" of proteins Woodward, 1993!, and noted that if this is general, a number of significant implications follow. Our original suggestion was based on the few cases available at the time; since Reprint requests to: Clare Woodward, Department of Biochemistry, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108; e-mail: clare@biosci.cbs.umn.edu.Abbreviations: k obs , observed exchange rate constant; k N , rate constant for exchange by the folded state mechanism; k D , rate constant for exchange b...
Effects of mutations on hydrogen exchange kinetics, structure, and stability suggest that the slow exchange core is a key element in protein folding. Single amino acid variants of bovine pancreatic trypsin inhibitor (BPTI) have been made with glycine or alanine replacement of residues Tyr 35, Gly 37, Asn 43, and Asn 44. The crystal structures of Y35G and N43G are reported [Housset, D., Kim, K.-S., Fuchs, J., & Woodward, C. (1991) J. Mol. Biol. 220, 757-770; Danishefsky, A. T., Housset, D., Kim, K.-S., Tao, F., Fuchs, J., Woodward, C., & Wlodawer, A. (1993) Protein Sci. 2, 577-587; Kim, K.-S., Tao, F., Fuchs, J. A., Danishefsky, A. T., Housset, D., Wlodawer, A., & Woodward, C. (1993a) Protein Sci. 2, 588-596]. NMR chemical shifts indicate few changes from the wild type (WT) in G37A and N44G. Stabilities of the four mutants were measured by calorimetry and by hydrogen exchange. Values of delta delta(WT-->mut), the difference in delta G of folding/unfolding between the wild type and mutant, estimated by both methods are in good agreement and are in the range 4.7-6.0 kcal/mol. There is no general correlation between stability and hydrogen exchange rates at pH 3.5 and 30 degrees C. Exchange occurs by two parallel pathways, one involving small noncooperative fluctuations of the native state, and the other involving cooperative, global unfolding. In the mutant proteins, the rates for exchange by the unfolding mechanism are accelerated by a factor corresponding to the increase in the unfolding/folding equilibrium constant.(ABSTRACT TRUNCATED AT 250 WORDS)
Aspartic acid 26 in Escherichia coli thioredoxin is located at the bottom of a hydrophobic cavity, near the redox-active disulfide of the active site. Asp 26 is embedded in the protein except for part of the surface of one carboxyl oxygen. The high degree of evolutionary conversion of Asp 26 suggests that it plays a critical role in thioredoxin function. We have determined the pKa of Asp 26 by a novel electrophoretic method based on the relative electrophoretic mobilities of wild-type thioredoxin and of D26A thioredoxin (with Asp 26 replaced by alanine). The pKa of Asp 26 determined by this technique is 7.5, more than 3 units above the pKa of a solvated carboxyl side chain. The titration of Asp 26 is thermodynamically linked to the stability of thioredoxin. As expected if thioredoxin stability depends on the ionization state of Asp 26, delta Go WT, the free energy of the cooperative denaturation reaction of wild-type thioredoxin by guanidine hydrochloride, varies with pH in a sigmoidal fashion in the vicinity of pH 7.5. Over the same pH range, the free energy for D26A folding, delta Go D26A, is pH independent and D26A is highly stabilized compared to wild type. From the thermodynamic cycle describing the linkage of Asp 26 titration to thioredoxin stability, the difference in free energy between wild-type thioredoxin with protonated Asp 26 and wild-type thioredoxin with deprotonated Asp 26, delta delta Go (COOH----COO-), is calculated to be 4.9 kcal/mol.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.