During cancer cell growth many tumors exhibit various grades of desmoplasia, unorganized production of fibrous or connective tissue, composed mainly of collagen fibers and myofibroblasts. The accumulation of an extracellular matrix (ECM) surrounding tumors directly affects cancer cell proliferation, migration and spread; therefore the study of desmoplasia is of vital importance. Stromal fibroblasts surrounding tumors are activated to myofibroblasts and become the primary producers of ECM during desmoplasia. The composition, density and organization of this ECM accumulation play a major role on the influence desmoplasia has upon tumor cells. In this study, we analyzed desmoplasia in vivo in human colorectal carcinoma tissue, detecting an up-regulation of collagen I, collagen IV and collagen V in human colorectal cancer desmoplastic reaction. These components were then analyzed in vitro co-cultivating colorectal cancer cells (Caco-2 and HCT116) and fibroblasts utilizing various co-culture techniques. Our findings demonstrate that direct cell-cell contact between fibroblasts and colorectal cancer cells evokes an increase in ECM density, composed of unorganized collagens (I, III, IV and V) and proteoglycans (biglycan, fibromodulin, perlecan and versican). The desmoplastic collagen fibers were thick, with an altered orientation, as well as deposited as bundles. This increased ECM density inhibited the migration and invasion of the colorectal tumor cells in both 2D and 3D co-culture systems. Therefore this study sheds light on a possible restricting role desmoplasia could play in colorectal cancer invasion.
The stromal reaction surrounding tumors leads to the formation of a tumor-specific microenvironment, which may play either a restrictive role or a supportive role in the growth and progression of the tumors. Lumican, a small leucine-rich proteoglycan (SLRP) of the extracellular matrix (ECM), regulates collagen fibrillogenesis. Recently, lumican has also been shown to regulate cell behavior during embryonic development, tissue repair and tumor progression. The role of lumican in cancer varies according to the type of tumor. In this study we analyze the role of lumican in the pathogenesis of prostate cancer both in vivo and in vitro. Overall lumican up-regulation was observed in the primary tumors analyzed through both real-time PCR and immunostaining. The increase in lumican expression was observed in the reactive stroma surrounding prostate primary tumors with fibrotic deposition surrounding the acinar glands. In vitro analysis demonstrated that lumican inhibited both the migration and invasion of metastatic prostate cancer cells isolated from lymph node, bone and brain. Moreover, prostate cancer cells seeded on lumican presented a decrease in the formation of cellular projections, lamellipodia detected by a decreased rearrangement in ZO-1, keratin 8/18, integrin β1 and MT1-MMP, and invadopodia detected by disruption of α-smooth muscle actin, cortactin and N-WASP. Moreover, a significant increase in prostate cancer cell invasion was observed through the peritoneum of lumican knockout mice, further demonstrating the restrictive role lumican present in the ECM has on prostate cancer invasion. In conclusion, lumican present in the reactive stroma surrounding prostate primary tumors plays a restrictive role on cancer progression, and we therefore postulate that lumican could be a valuable marker in prostate cancer staging.
Background:The effect of Enterolobium contortisiliquum trypsin inhibitor (EcTI) on the adhesion, migration, and invasion of gastric cancer cells. Results: EcTI inhibited adhesion, migration, and cell invasion and decreased Src-FAK signaling. Conclusion: EcTI inhibits the invasion of gastric cancer cells through alterations in integrin-dependent cell signaling pathways. Significance: Inhibition of invadopodia formation may be an attractive approach for cancer therapy.
Supplementary to the efficient inhibition of trypsin, chymotrypsin, plasma kallikrein, and plasmin already described by the EcTI inhibitor from Enterolobium contortisiliquum, it also blocks human neutrophil elastase (K iapp s4.3 nM) and prevents phorbol ester (PMA)-stimulated activation of matrix metalloproteinase (MMP)-2 probably via interference with membrane-type 1 (MT1)-MMP. Moreover, plasminogeninduced activation of proMMP-9 and processing of active MMP-2 was also inhibited. Furthermore, the effect of EcTI on the human cancer cell lines HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), K562 and THP-1 (leukemia), as well as on human primary fibroblasts and human mesenchymal stem cells (hMSCs) was studied. EcTI inhibited in a concentration range of 1.0-2.5 mM rather specifically tumor cell viability without targeting primary fibroblasts and hMSCs. Taken together, our data indicate that the polyspecific proteinase inhibitor EcTI prevents proMMP activation and is cytotoxic against tumor cells without affecting normal tissue remodeling fibroblasts or regenerative hMSCs being an important tool in the studies of tumor cell development and dissemination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.