The development of dynamic hand orthoses is a fast-growing field of research and has resulted in many different devices. A large and diverse solution space is formed by the various mechatronic components which are used in these devices. They are the result of making complex design choices within the constraints imposed by the application, the environment and the patient鈥檚 individual needs. Several review studies exist that cover the details of specific disciplines which play a part in the developmental cycle. However, a general collection of all endeavors around the world and a structured overview of the solution space which integrates these disciplines is missing. In this study, a total of 165 individual dynamic hand orthoses were collected and their mechatronic components were categorized into a framework with a signal, energy and mechanical domain. Its hierarchical structure allows it to reach out towards the different disciplines while connecting them with common properties. Additionally, available arguments behind design choices were collected and related to the trends in the solution space. As a result, a comprehensive overview of the used mechatronic components in dynamic hand orthoses is presented.Electronic supplementary materialThe online version of this article (doi:10.1186/s12984-016-0168-z) contains supplementary material, which is available to authorized users.
Recovery of functional hand movements after stroke is directly linked to rehabilitation duration and intensity. Continued therapy at home has the potential to increase both. For many patients this requires a device that helps them overcome the hyperflexion of wrist and fingers that is limiting their ability to open and use their hand. We developed an interactive hand and wrist orthosis for post-stroke rehabilitation that provides compliant and adaptable extension assistance at the wrist and fingers, interfaces with motivational games based on activities of daily living, is integrated with an off-the-shelf mobile arm support and includes novel wrist and finger actuation mechanisms. During the iterative development, multiple prototypes have been evaluated by therapists in clinical settings and used intensively and independently by 33 patients at home. This paper details the final design of the SCRIPT passive orthosis resulting from these efforts.
Upper limb functions are severely affected in 23% of the chronic stroke patients, compromising their life quality. To re-enable hand use, providing a degree of functionality and motivating against learned non-use, we propose a robotic supernumerary limb, the SoftHand X (SHX), consisting of a robotic hand, a gravity support system, and different sensors to detect the patient's intent for controlling the robotic hand. In this paper, this novel compensational approach is introduced and experimentally evaluated in stroke patients, assessing its efficacy, usability and safety. Ten patients were asked to perform tasks of a modified Action Research Arm Test with the SHX, by using three input methods. The mARAT scores rated the potentiality of the system. Usability was evaluated with the System Usability Scale, while spasticity before and after use was measured by the modified Ashworth Scale (mAS). Nine patients, not able to perform any tasks without external support, completed the whole experimental procedure using the proposed system with a median score greater than 12/30. Among the three input methods tested, the usability of one was rated as "good" while the other two were rated as "ok". Seven patients exhibited a reduction of the mAS. All nine patients stated that they would use the system frequently. Results obtained suggest that the SHX has the potential to partially compensate severely impaired hand function in stroke patients.
Introduction: There is evidence that increasing therapy dose after stroke might promote recovery. Unfortunately, in clinical practice, therapy dose is limited by financial and organizational constraints. Simple robotic devices could be used without supervision in the clinic or at home to increase dose without requiring additional resources. For this purpose, we developed HandyBot, a portable three-degrees-of-freedom end-effector haptic device to perform sensorimotor task-oriented therapy of hand function (i.e., grasping, forearm pronosupination, wrist flexion-extension) in different environments.Methods: We present the mechatronic design of the device and its technical evaluation in terms of workspace, dynamics (i.e., max end-effector velocity, acceleration and force), sensing (i.e., position, velocity and force resolution) and haptic performance (i.e., transparency, maximum stable impedance range, rigid contact rendering accuracy). In addition, its feasibility and usability (in terms of System Usability Scale (SUS)) were assessed in a single-session experiment with four subjects with chronic stroke that tested the HandyBot therapy platform (i.e., haptic device with a graphical/physical user interface and a set of therapy exercises) while simulating unsupervised use (i.e., the subject used the device independently while a therapist was only observing the session).Results: HandyBot showed hardware and control performances comparable to other less portable therapy devices for hand function (e.g., 94% accuracy in stiffness rendering, low apparent mass of 0.2聽kg in transparency mode), making it a suitable platform for the implementation of sensorimotor therapy exercises. HandyBot showed good platform usability in terms of SUS (i.e., above 75 out of 100 for device and graphical user interfaces, above 65 out of 100 for the exercises) when tested in simulated unsupervised settings. These tests underlined minor design improvements that should be considered to allow using such a device in uncontrolled settings.Discussion: HandyBot is a novel robot for hand rehabilitation after stroke that revealed high-quality hardware and haptic performance. HandyBot was usable for stroke patients at first exposure for (simulated) unsupervised robot-assisted sensorimotor therapy of hand function. This therapy approach combined with this novel portable robotic device has the potential to help increase therapy dose and decrease therapy-associated costs (e.g., therapist time to therapy time ratio) in different environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.