Bistable molecules that behave as switches in solution have long been known. Systems that can be reversibly converted between two stable states that differ in their physical properties are particularly attractive in the development of memory devices when immobilized in substrates. Here, we report a highly robust surface-confined switch based on an electroactive, persistent organic radical immobilized on indium tin oxide substrates that can be electrochemically and reversibly converted to the anion form. This molecular bistable system behaves as an extremely robust redox switch in which an electrical input is transduced into optical as well as magnetic outputs under ambient conditions. The fact that this molecular surface switch, operating at very low voltages, can be patterned and addressed locally, and also has exceptionally high long-term stability and excellent reversibility and reproducibility, makes it a very promising platform for non-volatile memory devices.
A self-assembled monolayer of a tetrathiafulvalene derivative on indium tin oxide is shown to operate as a ternary redox switch in which the magnetic and optical outputs are employed to provide a readout of the state. This surface-confined molecular switch exhibits excellent reversibility and stability and is thus promising for the development of molecular electronics.
The conductivity through two self‐assembled monolayers (SAMs) on gold based on the closed‐and open‐shell form of a polychlorotriphenylmethyl (PTM) derivative were investigated using 3D‐mode conductive scanning force microscopy, and striking differences were observed, caused by their highly distinct electronic structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.