BackgroundLeptospirosis, a spirochaetal zoonosis, occurs in diverse epidemiological settings and affects vulnerable populations, such as rural subsistence farmers and urban slum dwellers. Although leptospirosis is a life-threatening disease and recognized as an important cause of pulmonary haemorrhage syndrome, the lack of global estimates for morbidity and mortality has contributed to its neglected disease status.Methodology/Principal FindingsWe conducted a systematic review of published morbidity and mortality studies and databases to extract information on disease incidence and case fatality ratios. Linear regression and Monte Carlo modelling were used to obtain age and gender-adjusted estimates of disease morbidity for countries and Global Burden of Disease (GBD) and WHO regions. We estimated mortality using models that incorporated age and gender-adjusted disease morbidity and case fatality ratios. The review identified 80 studies on disease incidence from 34 countries that met quality criteria. In certain regions, such as Africa, few quality assured studies were identified. The regression model, which incorporated country-specific variables of population structure, life expectancy at birth, distance from the equator, tropical island, and urbanization, accounted for a significant proportion (R2 = 0.60) of the variation in observed disease incidence. We estimate that there were annually 1.03 million cases (95% CI 434,000–1,750,000) and 58,900 deaths (95% CI 23,800–95,900) due to leptospirosis worldwide. A large proportion of cases (48%, 95% CI 40–61%) and deaths (42%, 95% CI 34–53%) were estimated to occur in adult males with age of 20–49 years. Highest estimates of disease morbidity and mortality were observed in GBD regions of South and Southeast Asia, Oceania, Caribbean, Andean, Central, and Tropical Latin America, and East Sub-Saharan Africa.Conclusions/SignificanceLeptospirosis is among the leading zoonotic causes of morbidity worldwide and accounts for numbers of deaths, which approach or exceed those for other causes of haemorrhagic fever. Highest morbidity and mortality were estimated to occur in resource-poor countries, which include regions where the burden of leptospirosis has been underappreciated.
Illness and death from diseases caused by contaminated food are a constant threat to public health and a significant impediment to socio-economic development worldwide. To measure the global and regional burden of foodborne disease (FBD), the World Health Organization (WHO) established the Foodborne Disease Burden Epidemiology Reference Group (FERG), which here reports their first estimates of the incidence, mortality, and disease burden due to 31 foodborne hazards. We find that the global burden of FBD is comparable to those of the major infectious diseases, HIV/AIDS, malaria and tuberculosis. The most frequent causes of foodborne illness were diarrheal disease agents, particularly norovirus and Campylobacter spp. Diarrheal disease agents, especially non-typhoidal Salmonella enterica, were also responsible for the majority of deaths due to FBD. Other major causes of FBD deaths were Salmonella Typhi, Taenia solium and hepatitis A virus. The global burden of FBD caused by the 31 hazards in 2010 was 33 million Disability Adjusted Life Years (DALYs); children under five years old bore 40% of this burden. The 14 subregions, defined on the basis of child and adult mortality, had considerably different burdens of FBD, with the greatest falling on the subregions in Africa, followed by the subregions in South-East Asia and the Eastern Mediterranean D subregion. Some hazards, such as non-typhoidal S. enterica, were important causes of FBD in all regions of the world, whereas others, such as certain parasitic helminths, were highly localised. Thus, the burden of FBD is borne particularly by children under five years old–although they represent only 9% of the global population–and people living in low-income regions of the world. These estimates are conservative, i.e., underestimates rather than overestimates; further studies are needed to address the data gaps and limitations of the study. Nevertheless, all stakeholders can contribute to improvements in food safety throughout the food chain by incorporating these estimates into policy development at national and international levels.
The arginine methyltransferase PRMT6 (protein arginine methyltransferase 6) has been shown recently to regulate DNA repair and gene expression. As arginine methylation of histones is an important mechanism in transcriptional regulation, we asked whether PRMT6 possesses activity toward histones. We show here that PRMT6 methylates histone H3 at R2 and histones H4/H2A at R3 in vitro. Overexpression and knockdown analysis identify PRMT6 as the major H3 R2 methyltransferase in vivo. We find that H3 R2 methylation inhibits H3 K4 trimethylation and recruitment of WDR5, a subunit of the MLL (mixed lineage leukemia) K4 methyltransferase complex, to histone H3 in vitro. Upon PRMT6 overexpression, transcription of Hox genes and Myc-dependent genes, both well-known targets of H3 K4 trimethylation, decreases. This transcriptional repression coincides with enhanced occurrence of H3 R2 methylation and PRMT6 as well as reduced levels of H3 K4 trimethylation and MLL1/WDR5 recruitment at the HoxA2 gene. Upon retinoic acid-induced transcriptional activation of HoxA2 in a cell model of neuronal differentiation, PRMT6 recruitment and H3 R2 methylation are diminished and H3 K4 trimethylation increases at the gene. Our findings identify PRMT6 as the mammalian methyltransferase for H3 R2 and establish the enzyme as a crucial negative regulator of H3 K4 trimethylation and transcriptional activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.