In this study, milk-coagulation properties (MCP) were characterized in the Sarda sheep breed. Milk composition and MCP [rennet-coagulation time (RCT), curd-firming time [time to reach a curd firmness of 20mm (k20)], and curd firmness (a30), (a45), and (a60)] were obtained extending the lactodynamographic analysis from 30 to 60 min from a population of 1,121 ewes from 23 different farms. Managerial characteristics of farms and parity, individual daily milk yields and stage of lactation of ewes were recorded. Data were analyzed using a mixed-model procedure with fixed effects of days in milk, parity, daily milk yield, and flock size and the random effect of the flock/test day nested within flock size. Sampled farms were classified as small (<300 ewes) and medium (300 to 600 ewes), and these were kept by family operations, or as large (>600 ewes), often operated through hired workers. Daily milk yield was, on average, 1.58 ± 0.79 L/d and variability for this trait was very high. The average content of fat, protein, and casein was respectively 6.41, 5.39, and 4.20%. The class of flock size had a significant effect only on curd firmness, whereas days in milk affected RCT and k20. The flock test day, parity, and daily milk yield were important sources of variation for all MCP. The mean value of RCT (8.6 min) and the low occurrence of noncoagulating samples (0.44%) confirmed the excellent coagulation ability of sheep milk compared with cattle milk. A more rapid coagulation was observed in mid-lactating, primiparous, and high-yielding ewes. The k20 was usually reached in less than 2 min after gelation, with the most favorable values at mid lactation. The mean value of curd firmness 30 min after rennet addition (a30) was, on average, 50mm and decreased to 46 and 42 mm respectively after 45 (a45) and 60 min (a60). The decreasing value of curd-firmness traits was likely to be caused by curd syneresis and whey expulsion. The correlation between RCT and a30 was much lower than in dairy cows and about null for a45 and a60. This means that curd firmness in dairy ewes is almost independent of gelation time and this can provide specific information for this species. In conclusion, this study showed that milk from Sarda sheep is characterized by an earlier gelation, a faster increase in curd firmness with time, and greater curd firmness after 30 min compared with dairy cows. Furthermore, correlations between MCP in sheep are much lower than in bovines and some of the assumptions and interpretations related to cows cannot be applied to sheep.
Cheese yield (CY) is the most important technological trait of milk, because cheese-making uses a very high proportion of the milk produced worldwide. Few studies have been carried out at the level of individual milk-producing animals due to a scarcity of appropriate procedures for model-cheese production, the complexity of cheese-making, and the frequent use of the fat and protein (or casein) contents of milk as a proxy for cheese yield. Here, we report a high-throughput cheese manufacturing process that mimics all phases of cheese-making, uses 1.5-L samples of milk from individual animals, and allows the simultaneous processing of 15 samples per run. Milk samples were heated (35°C for 40 min), inoculated with starter culture (90 min), mixed with rennet (51.2 international milk-clotting units/L of milk), and recorded for gelation time. Curds were cut twice (10 and 15 min after gelation), separated from the whey, drained (for 30 min), pressed (3 times, 20 min each, with the wheel turned each time), salted in brine (for 60 min), weighed, and sampled. Whey was collected, weighed, and sampled. Milk, curd, and whey samples were analyzed for pH, total solids, fat content, and protein content, and energy content was estimated. Three measures of percentage cheese yield (%CY) were calculated: %CY(CURD), %CY(SOLIDS), and %CY(WATER), representing the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: REC(FAT), REC(PROTEIN), and REC(SOLIDS), which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding components in the milk. Energy recovery, REC(ENERGY), represented the energy content of the cheese compared with that in the milk. This procedure was used to process individual milk samples obtained from 1,167 Brown Swiss cows reared in 85 herds of the province of Trento (Italy). The assessed traits exhibited almost normal distributions, with the exception of REC(FAT). The average values (± SD) were as follows: %CY(CURD)=14.97±1.86, %CY(SOLIDS)=7.18±0.92, %CY(WATER)=7.77±1.27, dCY(CURD)=3.63±1.17, dCY(SOLIDS)=1.74±0.57, dCY(WATER)=1.88±0.63, REC(FAT)=89.79±3.55, REC(PROTEIN)=78.08±2.43, REC(SOLIDS)=51.88±3.52, and REC(ENERGY)=67.19±3.29. All traits were highly influenced by herd-test-date and days in milk of the cow, moderately influenced by parity, and weakly influenced by the utilized vat. Both %CY(CURD) and dCY(CURD) depended not only on the fat and protein (casein) contents of the milk, but also on their proportions retained in the curd; the water trapped in curd presented an higher variability than that of %CY(SOLIDS). All REC traits were variable and affected by days in milk and parity of the cows. The described model cheese-making procedure and the results obtained provided new insi...
Milk coagulation properties (MCP) have been widely investigated in the past using milk collected from different cattle breeds and herds. However, to our knowledge, no previous studies have assessed MCP in individual milk samples from several multi-breed herds characterized by either high or low milk productivity, thereby allowing the effects of herd and cow breed to be evaluated independently. Multi-breed herds (n=41) were classified into 2 categories based on milk productivity (high vs. low), defined according to the average milk net energy yielded daily by lactating cows. Milk samples were taken from 1,508 cows of 6 different breeds: 3 specialized dairy (Holstein-Friesian, Brown Swiss, Jersey) and 3 dual-purpose (Simmental, Rendena, Alpine Grey) breeds, and analyzed in duplicate (3,016 tests) using 2 lactodynamographs to obtain 240 curd firming (CF) measurements over 60min (1 every 15 s) for each duplicate. The 5 traditional single-point MCP (RCT, k, a, a, and a) were yielded directly by the instrument from the available CF measures. All 240 CF measures of each replicate were also used to estimate 4 individual equation parameters: RCT estimated according to curd firm change over time modeling (RCT), asymptotic potential curd firmness (CF), curd firming instant rate constant (k), and syneresis instant rate constant (k) and 2 derived traits: maximum curd firmness achieved within 45min (CF) and time at achievement of CF (t) by curvilinear regression using a nonlinear procedure. Results showed that the effect of herd-date on traditional and modeled MCP was modest, ranging from 6.1% of total variance for k to 10.7% for RCT, whereas individual animal variance was the highest, ranging from 32.0% for t to 82.5% for RCT. The repeatability of MCP was high (>80%) for all traits except those associated with the last part of the lactodynamographic curve (i.e., a, k, k, and t: 57 to 71%). Reproducibility, taking into account the effect of instrument, was equal to or slightly lower than repeatability. Milk samples collected in farms characterized by high productivity exhibited delayed coagulation (RCT: 18.6 vs. 16.3min) but greater potential curd firmness (CF: 76.8 vs. 71.9mm) compared with milk samples collected from low-productivity herds. Parity and days in milk influenced almost all MCP. Large differences in all MCP traits were observed among breeds, both between specialized and dual-purpose breeds and within these 2 groups of breeds, even after adjusting for milk quality and yield. Milk quality and MCP of samples from Jersey cows, and coagulation time of samples from Rendena cows were better than in milk from Holstein-Friesian cows, and intermediate results were found with the other breeds of Alpine origin. The results of this study, taking into account the intrinsic limitation of this technique, show that the effects of breed on traditional and modeled MCP are much greater than the effects of herd productivity class, parity, and DIM. Moreover, the variance in individual animals is much greater than the variance in indiv...
The aim of the present study was to compare milk coagulation properties measured through a traditional mechanical device, the Formagraph (FRM; Foss Electric A/S, Hillerød, Denmark), and a near-infrared optical device, the Optigraph (OPT; Ysebaert SA, Frépillon, France). Individual milk samples of 913 Brown Swiss cows from 63 herds located in Trento Province (Italy) were analyzed for rennet coagulation time (RCT, min), curd-firming time (k(20), min), and 2 measures of curd firmness (a(30) and a(45),mm) using the 2 instruments and under identical conditions. The trial was performed in the same laboratory, by the same technician, and following the same procedures. Extending the analysis by either instrument to 90 min permitted RCT and k(20) values to be obtained even for late-coagulating milk samples. Milk coagulation properties measured using the OPT differed considerably from those obtained using the FRM. The average k(20) values varied greatly (8.16 vs. 5.36 min for the OPT and the FRM, respectively), as did the a(45) figures (41.49 vs. 33.66 mm for the OPT and the FRM, respectively). The proportion of noncoagulating samples for which k(20) could be estimated differed between instruments, being less for the OPT. The between-instrument correlation coefficients were either moderate (0.48 for a(30)) or low (0.24 and 0.17 for k(20) and a(45), respectively) when the same traits were compared. The correlations between k(20) and a(45), and milk yield varied among instruments, as did the correlations between k(20), a(30), and a(45) and milk composition, and the correlations between a(45) and pH. The relative influence of days in milk on k(20) and a(45) varied, as did the effect of parity on a(45) and that of the measuring unit of coagulation meter on k(20) and a(30). The RCT estimated by the OPT was the only milk coagulation property to show good agreement with the FRM-derived value, although this was not true for the data from late-coagulating samples.
The objectives of this study were to characterize the variation in curd firmness model parameters obtained from coagulating bovine milk samples, and to investigate the effects of the dairy system, season, individual farm, and factors related to individual cows (days in milk and parity). Individual milk samples (n = 1,264) were collected during the evening milking of 85 farms representing different environments and farming systems in the northeastern Italian Alps. The dairy herds were classified into 4 farming system categories: traditional system with tied animals (29 herds), modern dairy systems with traditional feeding based on hay and compound feed (30 herds), modern dairy system with total mixed ration (TMR) that included silage as a large proportion of the diet (9 herds), and modern dairy system with silage-free TMR (17 herds). Milk samples were analyzed for milk composition and coagulation properties, and parameters were modeled using curd firmness measures (CFt) collected every 15 s from a lacto-dynamographic analysis of 90 min. When compared with traditional milk coagulation properties (MCP), the curd firming measures showed greater variability and yielded a more accurate description of the milk coagulation process: the model converged for 93.1% of the milk samples, allowing estimation of 4 CFt parameters and 2 derived traits [maximum CF (CF(max)) and time from rennet addition to CF(max) (t(max))] for each sample. The milk samples whose CFt equations did not converge showed longer rennet coagulation times obtained from the model (RCT(eq)) and higher somatic cell score, and came from less-productive cows. Among the sources of variation tested for the CFt parameters, dairy herd system yielded the greatest differences for the contrast between the traditional farm and the 3 modern farms, with the latter showing earlier coagulation and greater instant syneresis rate constant (k(SR)). The use of TMR yielded a greater tmax because of a higher instant curd-firming rate constant (k(CF)). Season of sampling was found to be very important, yielding higher values during winter for all traits except k(CF) and k(SR). All CFt traits were affected by individual cow factors. For parity, milk produced by first-lactation cows showed higher k(CF) and k(SR), but delays in achieving CF(max). With respect to stage of lactation, RCT(eq) and potential asymptotic CF increased during the middle of lactation and stabilized thereafter, whereas the 2 instant rate constants presented the opposite pattern, with the lowest (k(CF)) and highest (k(SR)) values occurring in mid lactation. The new challenge offered by prolonging the test interval and individual modeling of milk technological properties allowed us to study the effects of parameters related to the environment and to individual cows. This novel strategy may be useful for investigating the genetic variability of these new coagulation traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.