This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The spatial and temporal organization of T cell signaling molecules is increasingly accepted as a crucial step in controlling T cell activation. CD222, also known as the cation-independent mannose 6-phosphate/insulin-like growth factor 2 receptor, is the central component of endosomal transport pathways. In this study, we show that CD222 is a key regulator of the early T cell signaling cascade. Knockdown of CD222 hampers the effective progression of TCR-induced signaling and subsequent effector functions, which can be rescued via reconstitution of CD222 expression. We decipher that Lck is retained in the cytosol of CD222-deficient cells, which obstructs the recruitment of Lck to CD45 at the cell surface, resulting in an abundant inhibitory phosphorylation signature on Lck at the steady state. Hence, CD222 specifically controls the balance between active and inactive Lck in resting T cells, which guarantees operative T cell effector functions.
Background:The plasminogen system is central in cell migration and is thus involved in many patho/physiological processes. Results: M6P-IGF2R is a regulatory factor in plasminogen-associated complexes and mediates plasminogen internalization. Conclusion: The uptake of plasminogen by M6P-IGF2R might be an important pathway to control plasminogen activation in cells. Significance: M6P-IGF2R restricts plasmin activity and its loss might lead to rampant fibrinolysis.
The plasminogen system is harnessed in a wide variety of physiological processes, such as fibrinolysis, cell migration, or efferocytosis; and accordingly, it is essential upon inflammation, tissue remodeling, wound healing, and for homeostatic maintenance in general. Previously, we identified a plasminogen receptor in the mannose 6‐phosphate/insulin‐like growth factor 2 receptor (M6P/IGF2R, CD222). Here, we demonstrate by means of genetic knockdown, knockout, and rescue approaches combined with functional studies that M6P/IGF2R is up‐regulated on the surface of macrophages, recognizes plasminogen exposed on the surface of apoptotic cells, and mediates plasminogen‐induced efferocytosis. The level of uptake of plasminogen‐coated apoptotic cells inversely correlates with the TNF‐α production by phagocytes indicating tissue clearance without inflammation by this mechanism. Our results reveal an up‐to‐now undetermined function of M6P/IGF2R in clearance of apoptotic cells, which is crucial for tissue homeostasis.
Background & Aims24-NorUrsodeoxycholic acid (NorUDCA) is novel therapy for immune-mediated liver diseases such as primary sclerosing cholangitis (PSC) where dysregulated T cells including CD8+ T cells cause liver immunopathology. We hypothesized that NorUDCA may directly modulate CD8+ T cell effector function thus contributing to its therapeutic efficacy independent of anti-cholestatic effects.MethodsNorUDCA effects on CD8+ T cell function in vivo were investigated in a hepatic injury model system induced by excessive CD8+ T cell immune response upon non-cytolytic lymphocytic choriomeningitis virus (LCMV) infection. Mechanistic studies included molecular and biochemical approaches, flow cytometry and metabolic assays in mouse CD8+ T cells in vitro. Mass spectrometry (MS) was used to identify potential targets modulated by NorUDCA in CD8+ T cells. NorUDCA signaling effects observed in murine systems were validated in peripheral T cells from healthy volunteers and PSC patients.ResultsIn vivo NorUDCA ameliorated hepatic injury and systemic inflammation upon LCMV infection. Mechanistically, NorUDCA demonstrated a strong immunomodulatory efficacy in CD8+ T cells affecting lymphoblastogenesis, mTORC1 signaling and glycolysis of CD8+ T cells. With MS, we identified that NorUDCA regulates CD8+ T cells via targeting mTORC1. NorUDCA’s impact on mTORC1 signaling was further confirmed in circulating human CD8+ T cells.ConclusionsNorUDCA possesses a yet-unrecognized direct modulatory potency on CD8+ T cells and attenuates excessive CD8+ T cell hepatic immunopathology. These findings may be relevant for treatment of immune-mediated liver diseases such as PSC and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.