We report the observation of second-harmonic generation (SHG) in stoichiometric silicon nitride waveguides grown via low-pressure chemical vapor deposition (LPCVD). Quasi-rectangular waveguides with a large cross section were used, with a height of 1 µm and various different widths, from 0.6 to 1.2 µm, and with various lengths from 22 to 74 mm. Using a mode-locked laser delivering 6-ps pulses at 1064 nm wavelength with a repetition rate of 20 MHz, 15% of the incoming power was coupled through the waveguide, making maximum average powers of up to 15 mW available in the waveguide depending on the waveguide cross section. Second-harmonic output was observed with a delay of minutes to several hours after the initial turn-on of pump radiation, showing a fast growth rate between 10 −4 to 10 −2 s −1 , with the shortest delay and highest growth rate at the highest input power. After this first, initial build-up (observed delay and growth), the second-harmonic became generated instantly with each new turn-on of the pump laser power. Phase matching was found to be present independent of the used waveguide width, although the latter changes the fundamental and second-harmonic phase velocities. We address the presence of a second-order nonlinearity and phase matching, involving an initial, power-dependent build-up, to the coherent photogal-vanic effect. The effect, via the third-order nonlinearity and multiphoton absorption leads to a spatially patterned charge separation, which generates a spatially periodic, semi-permanent, DC-field-induced second-order susceptibility with a period that is appropriate for quasi-phase matching. The maximum measured second-harmonic conversion efficiency amounts to 0.4% in a waveguide with 0.9 × 1 µm 2 cross section and 36 mm length, corresponding to 53 µW at 532 nm with 13 mW of IR input coupled into the waveguide. The according χ (2)-susceptibility amounts to 3.7 pm/V, as retrieved from the measured conversion efficiency.
Strained silicon is a versatile new type of material, which has found application in microelectronics and integrated optics in the last years. Unlike ordinary silicon, it does not possess a centrosymmetric lattice structure. This allows for stimulation of nonlinear optical processes that involve second-order nonlinear susceptibility. Here, the dependence of the nonlinear susceptibility on the applied strain by means of reflected second-harmonic generation is investigated. This surface-sensitive technique is suitable for the investigation of bulk silicon strained by a layer of thermal oxide. The obtained relation between applied stress and susceptibility enhancement is compared to theoretical prediction based on an analytical model for the deformed silicon orbital. The knowledge of the stress-susceptibility dependence can be used to develop suitable photonic devices that benefit from second-order nonlinear processes in silicon.
A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.
Strained silicon is a versatile new type of material, which has found application in microelectronics and integrated optics. The applied strain alters the electronic and optical properties and gives rise to new properties previously not known to exist in silicon, like a bulk second order nonlinear susceptibility. Here, we determine experimentally the strain dependence of the second order nonlinear susceptibility on the applied strain. To this purpose, the strain induced second harmonic signal generated in the silicon was measured in a reflection geometry with azimuthal angle dependence. The extracted components of the second order nonlinear susceptibility were determined and compared to the unstrained case. Additionally the measurements were compared to results obtained with an analytical model, that takes into account the exponential strain decay at the sample surface. The predicted linear dependence between the surface strain and the second order nonlinear susceptibil ity agrees well with the results of our experimental work
We report on the optical mode structure of laterally confined organic microcavities. For preparation, an organic semiconductor is evaporated through a mask with square sized holes, resulting in photonic dots with approximately 5μm diameter. Using a microscope setup, we observe a complex mode structure in transmission and photoluminescence. From the mode mapping, we conclude a strong three-dimensional optical confinement. The near and far field spectra are modeled by transfer matrix calculations and a Fourier transform of the internal electric field distribution, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.