Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of nonlinear echoes; sharp scattering estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the nonlinear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications.Comment: News: (1) the main result now covers Coulomb and Newton potentials, and (2) some classes of Gevrey data; (3) as a corollary this implies new results of stability of homogeneous nonmonotone equilibria for the gravitational Vlasov-Poisson equatio
We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted L 2 norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed.
We present an abstract method for deriving decay estimates on the resolvents and semigroups of non-symmetric operators in Banach spaces in terms of estimates in another smaller reference Banach space. This applies to a class of operators writing as a regularizing part, plus a dissipative part. The core of the method is a high-order quantitative factorization argument on the resolvents and semigroups. We then apply this approach to the Fokker-Planck equation, to the kinetic Fokker-Planck equation in the torus, and to the linearized Boltzmann equation in the torus.We finally use this information on the linearized Boltzmann semigroup to study perturbative solutions for the nonlinear Boltzmann equation. We introduce a non-symmetric energy method to prove nonlinear stability in this context in L 1 v L ∞ x (1 + |v| k ), k > 2, with sharp rate of decay in time.As a consequence of these results we obtain the first constructive proof of exponential decay, with sharp rate, towards global equilibrium for the full nonlinear Boltzmann equation for hard spheres, conditionally to some smoothness and (polynomial) moment estimates. This improves the result in [32] where polynomial rates at any order were obtained, and solves the conjecture raised in [91,29,86] about the optimal decay rate of the relative entropy in the H-theorem. (2000): 47D06 One-parameter semigroups and linear evolution equations [See also 34G10, 34K30], 35P15 Estimation of eigenvalues, upper and lower bounds, 47H20 Semigroups of nonlinear operators [See also 37L05, 47J35, 54H15, 58D07], 35Q84 Fokker-Planck equations, 76P05 Rarefied gas flows, Boltzmann equation [See also 82B40, 82C40, 82D05]. Mathematics Subject Classification
Abstract. This paper is devoted to the study of propagation of chaos and mean-field limits for systems of indistinguable particles, undergoing collision processes. The prime examples we will consider are the many-particle jump processes of Kac and McKean [42,53] giving rise to the Boltzmann equation. We solve the conjecture raised by Kac [42], motivating his program, on the rigorous connection between the long-time behavior of a collisional many-particle system and the one of its mean-field limit, for bounded as well as unbounded collision rates.Motivated by the inspirative paper by Grünbaum [35], we develop an abstract method that reduces the question of propagation of chaos to that of proving a purely functional estimate on generator operators (consistency estimates), along with differentiability estimates on the flow of the nonlinear limit equation (stability estimates). This allows us to exploit dissipativity at the level of the mean-field limit equation rather than the level of the particle system (as proposed by Kac).Using this method we show: (1) Quantitative estimates, that are uniform in time, on the chaoticity of a family of states. (2) Propagation of entropic chaoticity, as defined in [10]. (3) Estimates on the time of relaxation to equilibrium, that are independent of the number of particles in the system. Our results cover the two main Boltzmann physical collision processes with unbounded collision rates: hard spheres and true Maxwell molecules interactions. The proof of the stability estimates for these models requires significant analytic efforts and new estimates.
Abstract. For a general class of linear collisional kinetic models in the torus, including in particular the linearized Boltzmann equation for hard spheres, the linearized Landau equation with hard and moderately soft potentials and the semi-classical linearized fermionic and bosonic relaxation models, we prove explicit coercivity estimates on the associated integro-differential operator for some modified Sobolev norms. We deduce existence of classical solutions near equilibrium for the full non-linear models associated, with explicit regularity bounds, and we obtain explicit estimates on the rate of exponential convergence towards equilibrium in this perturbative setting. The proof are based on a linear energy method which combines the coercivity property of the collision operator in the velocity space with transport effects, in order to deduce coercivity estimates in the whole phase space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.