Summary A novel chemical‐induced gene regulatory system for plants consisting of two molecular components is described. The first, or regulatory, cassette comprises a chimeric receptor composed of the hinge and ligand binding domains of the Heliothis virescens ecdysone receptor and the transactivation domain of the Herpes simplex VP16 protein fused to the DNA binding domain and transactivation of a mammalian glucocorticoid receptor. The second component, a reporter cassette, contains six copies of the glucocorticoid response element (GRE) fused to the minimal 35SCaMV promoter and β‐glucuronidase. The system uses a commercially available non‐steroidal ecdysone agonist, RH5992 (tebufenozide), as an inducer. Activation of gene expression is shown in both tobacco transient protoplasts and transgenic plants. The response is ligand dependent and is modulated by the change in minimal promoter context. The system is capable of inducing transgene activity up to 420‐fold corresponding to 150% of the activity observed with positive controls (35SCaMV:GUS).
The cDNAs encoding the seed antimicrobial peptides (AMPs) from Mirabilis jalapa (Mj-AMP2) and Amaranthus caudatus (Ac-AMP2) have previously been characterized and it was found that Mj-AMP2 and Ac-AMP2 are processed from a precursor preprotein and preproprotein, respectively [De Bolle et al., Plant Mol Biol 28:713-721 (1995) and 22:1187-1190 (1993), respectively]. In order to study the processing, sorting and biological activity of these antimicrobial peptides in transgenic tobacco, four different gene constructs were made: a Mj-AMP2 wild-type gene construct, a Mj-AMP2 mutant gene construct which was extended by a sequence encoding the barley lectin carboxyl-terminal propeptide, a known vacuolar targeting signal [Bednarek and Raikhel, Plant Cell 3: 1195-1206 (1991)]; an Ac-AMP2 wild-type gene construct; and finally, an Ac-AMP2 mutant gene construct which was truncated in order to delete the sequence encoding the genuine carboxyl-terminal propeptide. Processing and localization analysis indicated that an isoform of Ac-AMP2 with a cleaved-off carboxyl-terminal arginine was localized in the intercellular fluid fraction of plants expressing either wild-type or mutant gene constructs. Mj-AMP2 was recovered extracellularly in plants transformed with Mj-AMP2 wild-type gene construct, whereas an Mj-AMP2 isoform with a cleaved-off carboxyl-terminal arginine accumulated intracellularly in plants expressing the mutant precursor protein with the barley lectin propeptide. The in vitro antifungal activity of the AMPs purified from transgenic tobacco expressing any of the four different precursor proteins was similar to that of the authentic proteins. However, none of the transgenic plants showed enhanced resistance against infection with either Botrytis cinerea or Alternaria longipes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.