Phosphatase and tensin homolog (Pten) antagonizes PI3K-Akt signaling; therefore, Pten impairment causes tumorigenesis. However, the correlation between Pten deficiency and colon cancer has remained elusive due to numerous opposite observations. To study this correlation, we examined whether Pten deficiency in intestinal epithelial cells (IECs) induces tumorigenesis.
With mucosal biopsies of human colon cancer and normal colon, Pten mRNA was evaluated by quantitative PCR. Using IEC-specific Pten knockout mice (PtenΔIEC/ΔIEC), we examined the mitotic activity of IECs; and PtenΔIEC/ΔIEC; Apcmin/+ mice were generated by combining PtenΔIEC/ΔIEC with Apcmin/+ mice. Tumor-associated gene was evaluated by micro-array analysis. Fecal microbiome was analyzed through 16S rRNA gene sequencing.
We found that Pten mRNA level was reduced in human colon cancer relative to normal tissues. Augmented chromatids, increased Ki-67 and PCNA expression, and enhanced Akt activation were identified in IECs of PtenΔIEC/ΔIEC mice compared to Pten+/+ littermate. Combining PtenΔIEC/ΔIEC with Apcmin/+ condition caused rapid and aggressive intestinal tumorigenesis. However, PtenΔIEC/ΔIEC mice did not develop any tumors. While maintaining the tumor-driving potential, these data indicated that IEC-Pten deficiency alone did not induce tumorigenesis in mice. Furthermore, the expression of tumor-promoting and tumor-suppressing genes was decreased and increased, respectively, in the intestine of Pten ΔIEC/ΔIEC mice compared to controls. The abundance of Akkermansia muciniphila, capable of inducing chronic intestinal inflammation, was diminished in PtenΔIEC/ΔIEC mice compared to controls.
These findings suggested that altered tumor-associated gene expression and changed gut microbiotashape a tumor-preventive microenvironment to counteract the tumor-driving potential, leading to the tumor prevention in PtenΔIEC/ΔIEC mice.
Protease-activated receptor 2 (PAR2) regulates inflammatory responses and lipid metabolism. However, its precise role in colitis remains unclear. Here, we aimed to investigate the function of PAR2 in high-fat diet fed mice with colitis and its potential role in autophagy. PAR2+/+ and PAR2-/- mice were fed a high-fat diet (HFD) for 7 days before colitis induction with dextran sodium sulfate. Deletion of PAR2 and a HFD significantly exacerbated colitis as shown by increased mortality, body weight loss, diarrhea or bloody stools, colon length shortening, and mucosal damage. Pro-inflammatory cytokine levels were elevated in HFD-fed PAR2-/- mice and in cells treated with the PAR2 antagonist GB83, palmitic acid (PA), and a cytokine cocktail (CC). Damaging effects of PAR2 blockage were associated with autophagy regulation by reducing the levels of YAP1, SIRT1, PGC-1α, Atg5, and LC3A/B-I/II. Additionally, mitochondrial dysfunction was demonstrated only in cells treated with GB83, PA, and CC. Reduced cell viability and greater induction of apoptosis, as shown by increased levels of cleaved caspase-9, cleaved caspase-3, and cleaved PARP, were observed in cells treated with GB83, PA, and CC but not in those treated with only PA and CC. Collectively, protective effects of PAR2 were elucidated during inflammation accompanied by high-fat environment by promoting autophagy and inhibiting apoptosis, suggesting PAR2 as a therapeutic target for inflammatory bowel disease co-occurring with metabolic syndrome.
Autotaxin (ATX) converts lysophosphatidylcholine and sphingosylphosphorylcholine into lysophosphatidic acid and sphingosine 1phosphate, respectively. Despite the pivotal function of ATX in lipid metabolism, mechanisms by which ATX regulates immune and inflammatory disorders remain elusive. Here, using myeloid cell lineage-restricted Atx knockout mice, we show that Atx deficiency disrupts membrane microdomains and lipid rafts, resulting in the inhibition of Toll-like receptor 4 (TLR4) complex formation and the suppression of adaptor recruitment, thereby inhibiting TLR4mediated responses in macrophages. Accordingly, TLR4-induced innate immune functions, including phagocytosis and iNOS expression, are attenuated in Atx-deficient macrophages. Consequently, Atx À/À mice exhibit a higher bacterial prevalence in the intestinal mucosa compared to controls. When combined with global Il10 À/À mice, which show spontaneous colitis due to the translocation of luminal commensal microbes into the mucosa, myeloid cell lineage-restricted Atx knockout accelerates colitis development compared to control littermates. Collectively, our data reveal that Atx deficiency compromises innate immune responses, thereby promoting microbe-associated gut inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.