Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of a large number of endogenous compounds and the majority of ingested environmental chemicals, leading to their elimination and often to their metabolic activation to toxic products. This enzyme system therefore provides our primary defense against xenobiotics and is a major determinant in the therapeutic efficacy of pharmacological agents. To evaluate the importance of hepatic P450s in normal homeostasis, drug pharmacology, and chemical toxicity, we have conditionally deleted the essential electron transfer protein, NADH:ferrihemoprotein reductase (EC 1.6.2.4, cytochrome P450 reductase, CPR) in the liver, resulting in essentially complete ablation of hepatic microsomal P450 activity. Hepatic CPR-null mice could no longer break down cholesterol because of their inability to produce bile acids, and whereas hepatic lipid levels were significantly increased, circulating levels of cholesterol and triglycerides were severely reduced. Loss of hepatic P450 activity resulted in a 5-fold increase in P450 protein, indicating the existence of a negative feedback pathway regulating P450 expression. Profound changes in the in vivo metabolism of pentobarbital and acetaminophen indicated that extrahepatic metabolism does not play a major role in the disposition of these compounds. Hepatic CPR-null mice developed normally and were able to breed, indicating that hepatic microsomal P450-mediated steroid hormone metabolism is not essential for fertility, demonstrating that a major evolutionary role for hepatic P450s is to protect mammals from their environment. The hepatic cytochrome P450 (CYP)1 -dependent monoxygenase system plays a central role in mammalian defense against harmful environmental chemicals (1); it is also a major determinant of the half-life and pharmacological properties of therapeutic drugs and in certain cases, mediates the activation of drugs, toxins, and carcinogens to their ultimate toxic species (2, 3). Several other functions have been ascribed to hepatic P450s, including control of cholesterol and steroid hormone metabolism and bile acid biosynthesis (4). However, for certain of these pathways, the exact role of P450s in normal homeostasis is unknown.Over the last four decades, there have been significant advances in understanding the functions, genetics, and regulation of these enzymes and more recently their structure (5). However, a great deal remains to be learned about the expression and regulation of P450s, and their endogenous function(s), particularly in individual tissues. The size and diversity of the P450 multigene family results in great difficulties in dissecting out the function(s) of individual enzymes, particularly as many of those involved in foreign compound metabolism exhibit overlapping substrate specificities and may be expressed to a greater or lesser extent in almost every cell and tissue. The contribution that P450s in any particular tissue make to the overall pharmacokinetics of a drug is still, in the majority of cases,...
Mice that lack the Nrf2 basic-region leucine-zipper transcription factor are more sensitive than wild-type (WT) animals to the cytotoxic and genotoxic effects of foreign chemicals and oxidants. To determine the basis for the decrease in tolerance of the Nrf2 homozygous null mice to xenobiotics, enzyme assay, Western blotting and gene-specific real-time PCR (TaqMan) have been used to examine the extent to which hepatic expression of GSH-dependent enzymes is influenced by the transcription factor. The amounts of protein and mRNA for class Alpha, Mu and Pi glutathione S-transferases were compared between WT and Nrf2 knockout (KO) mice of both sexes under both constitutive and inducible conditions. Among the class Alpha and class Mu transferases, constitutive expression of Gsta1, Gsta2, Gstm1, Gstm2, Gstm3, Gstm4 and Gstm6 subunits was reduced in the livers of Nrf2 mutant mice to between 3% and 60% of that observed in WT mice. Induction of these subunits by butylated hydroxyanisole (BHA) was more marked in WT female mice than in WT male mice. TaqMan analyses showed the increase in transferase mRNA caused by BHA was attenuated in Nrf2(-/-) mice, with the effect being most apparent in the case of Gsta1, Gstm1 and Gstm3. Amongst class Pi transferase subunits, the constitutive hepatic level of mRNA for Gstp1 and Gstp2 was not substantially affected in the KO mice, but their induction by BHA was dependent on Nrf2; this was more obvious in female mutant mice than in male mice. Nrf2 KO mice exhibited reduced constitutive expression of the glutamate cysteine ligase catalytic subunit, and, to a lesser extent, the expression of glutamate cysteine ligase modifier subunit. Little variation was observed in the levels of glutathione synthase in the different mouse lines. Thus the increased sensitivity of Nrf2(-/-) mice to xenobiotics can be partly attributed to a loss in constitutive expression of multiple GSH-dependent enzymes, which causes a reduction in intrinsic detoxification capacity in the KO animal. These data also indicate that attenuated induction of GSH-dependent enzymes in Nrf2(-/-) mice probably accounts for their failure to adapt to chronic exposure to chemical and oxidative stress.
Isothiocyanates and phenolic antioxidants can prevent cancer through activation of Nrf2 (NF-E2 p45-related factor 2), a transcription factor that controls expression of cytoprotective genes through the antioxidant response element (ARE) enhancer. Using a human mammary MCF7-derived AREc32 reporter cell line, we now report that all-trans retinoic acid (ATRA), and other retinoic acid receptor alpha (RAR␣) agonists, markedly reduces the ability of Nrf2 to mediate induction of ARE-driven genes by cancer chemopreventive agents including the metabolite of butylated hydroxyanisole, tert-butylhydroquinone (tBHQ). The basal and tBHQ-inducible expression of aldo-keto reductase (AKR) AKR1C1 and AKR1C2 genes, which are regulated by Nrf2, was also repressed by ATRA in AREc32 cells. Antagonists of RAR␣ augmented induction of ARE-driven gene expression by tBHQ, as did knockdown of RAR␣ by using RNAi. The expression of the ARE-gene battery was increased in the small intestine of mice fed on a vitamin A-deficient diet, and this increase was repressed by administration of ATRA. By contrast, in the small intestine of Nrf2 null mice, the expression of ARE-driven genes was not affected by vitamin A status. In MCF7 cells, ATRA did not block the nuclear accumulation of Nrf2 but reduced the binding of Nrf2 to the ARE enhancer as a consequence of forming a complex with RAR␣. These data suggest that cross-talk between Nrf2 and RAR␣ could markedly influence the sensitivity of cells to electrophiles and oxidative stressors and, as a consequence, to carcinogenesis.aldo-keto reductase ͉ chemoprevention ͉ Nrf2 ͉ retinoids
Many studies using mammalian cellular and subcellular systems have demonstrated that polycyclic aromatic hydrocarbons, including benzo[a]pyrene (BaP), are metabolically activated by cytochrome P450s (CYPs). In order to evaluate the role of hepatic versus extra-hepatic metabolism of BaP and its pharmacokinetics, we used the hepatic cytochrome P450 reductase null (HRN) mouse model, in which cytochrome P450 oxidoreductase, the unique electron donor to CYPs, is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic CYP function. HRN and wild-type (WT) mice were treated intraperitoneally (i.p.) with 125 mg/kg body wt BaP daily for up to 5 days. Clearance of BaP from blood was analysed by high-performance liquid chromatography with fluorescence detection. DNA adduct levels were measured by (32)P-post-labelling analysis with structural confirmation of the formation of 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene by liquid chromatography-tandem mass spectrometry analysis. Hepatic microsomes isolated from BaP-treated and untreated mice were also incubated with BaP and DNA in vitro. BaP-DNA adduct formation was up to 7-fold lower with the microsomes from HRN mice than with that from WT mice. Most of the hepatic microsomal activation of BaP in vitro was attributable to CYP1A. Pharmacokinetic analysis of BaP in blood revealed no significant differences between HRN and WT mice. BaP-DNA adduct levels were higher in the livers (up to 13-fold) and elevated in several extra-hepatic tissues of HRN mice (by 1.7- to 2.6-fold) relative to WT mice. These data reveal an apparent paradox, whereby hepatic CYP enzymes appear to be more important for detoxification of BaP in vivo, despite being involved in its metabolic activation in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.