Prior to this paper, all small simple groups were known to be efficient, but the status of four of their covering groups was unknown. Nice, efficient presentations are provided in this paper for all of these groups, resolving the previously unknown cases. The authors鈥榩resentations are better than those that were previously available, in terms of both length and computational properties. In many cases, these presentations have minimal possible length. The results presented here are based on major amounts of computation. Substantial use is made of systems for computational group theory and, in partic-ular, of computer implementations of coset enumeration. To assist in reducing the number of relators, theorems are provided to enable the amalgamation of power relations in certain presentations. The paper concludes with a selection of unsolved problems about efficient presentations for simple groups and their covers.
This paper solves the problem of finding exact formulas for the waiting time cdf and queue length distribution of first-in-first-out M/G/1 queues in equilibrium with Pareto service. The formulas derived are new and are obtained by directly inverting the relevant Pollaczek-Khinchin formula and involve single integrals of non-oscillating real valued functions along the positive real line. Tables of waiting time and queue length probabilities are provided for certain parameter values under heavy traffic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.