Chilling tolerance was increased in seed germination and root growth of wheat seedlings grown in media containing 20 µg/mL cerebroside C (CC), isolated from the endophytic Phyllosticta sp. TG78. Seeds treated with 20 µg/mL CC at 4°C expressed the higher germination rate (77.78%), potential (23.46%), index (3.44) and the shorter germination time (6.19 d); root growth was also significantly improved by 13.76% in length, 13.44% in fresh weight and 6.88% in dry mass compared to controls. During the cultivation process at 4°C for three days and the followed 24 h at 25°C, lipid peroxidation, expressed by malondialdehyde (MDA) content and relative membrane permeability (RMP) was significantly reduced in CC-treated roots; activities of lipoxygenase (LOX), phospholipid C (PLC) and phospholipid D (PLD) were inhibited by 13.62–62.26%, 13.54–63.93% and 13.90–61.17%, respectively; unsaturation degree of fatty acids was enhanced through detecting the contents of CC-induced linoleic acid, linolenic acid, palmitic acid and stearic acid using GC-MS; capacities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were individually increased by 7.69–46.06%, 3.37–37.96%, and −7.00–178.07%. These results suggest that increased chilling tolerance may be due, in part, to the reduction of lipid peroxidation and alternation of lipid composition of roots in the presence of CC.
Forty-four benzofuroxan derivatives were designed and prepared as antifungal agents. Their structures were characterized by (1)H NMR, (13)C NMR, and HRMS. Their antifungal activities were tested in vitro with four important phytopathogenic fungi, namely, Rhizoctonia solani , Sclerotinia sclerotiorum , Fusarium graminearum and Phytophthora capsici , using the mycelium growth inhibition method. Compound A5 displayed the maximum antifungal activity against F. graminearum (IC50 = 1.1 μg/mL, which is about 2-fold higher than that of the well-known positive control carbendazim (IC50 = 0.5 μg/mL). A14 exhibited high antifungal effect against both S. sclerotiorum and F. graminearum Sehw., with IC50 values of 2.52 and 3.42 μg/mL, respectively. Among 14 benzofuroxan derivatives with substitutions at the R(2) and R(3) positions of the phenyl ring (B series), 7 compounds displayed strong growth inhibition against R. solani (IC50 ≤ 3.0 μg/mL). Analysis of the structure-activity relationship data of these compounds revealed that (1) introduction of an electron-donating amino group to the R(2) position of the phenyl ring favors antifungal activity against R. solani and (2) the presence of a nitro group at the R(4) position and substituent variation at the R(1) position of the phenyl ring can result in good antifungal candidates against F. graminearum Sehw. Overall, the benzofuroxan was discovered as a novel scaffold for the development of fungicides. Significantly, A14 was demonstrated to successfully suppress disease development in S. sclerotiorum infected cole in vivo.
Many endophytic fungi have been found to synthesize bioactive compounds to defend host plants against pathogenic organisms. Here we performed anti-fungal bioassay of 80 endophytic fungi isolated from Ginkgo biloba. Fifteen endophytes were active against at least one of the selected fungi, Fusarium graminearum, Sclerotinia sclerotiorum and Phytophthora capsici, using the agar diffusion method. The most bioactive strain CDW7 was identified as Chaetomium globosum by microscopic examination and ITS rRNA gene sequence data. Culture broth of CDW7 diluted 3-fold completely inhibited the mycelial growth and conidia germination of F. graminearum in vitro. Therefore, Fusarium head blight, a common disease in wheat and barley associated with Fusarium spp., was used to test the anti-phytopathogenic activity in vivo. The fermentation broth of CDW7 resulted in a protective efficacy of 54.9% and curative efficacy of 48.8%. Followed by a bioassay-guided approach, 1,2-benzenedicarboxaldehyde-3,4,5-trihydroxy-6-methyl (flavipin) was isolated and demonstrated to significantly inhibit the growth of several plant-pathogenic fungi, especially F. graminearum with an EC(50) value of 0.73 μg mL(-1) comparable to the commonly used fungicide carbendazim, indicating that it could be used as a fungicide or as a lead compound of new fungicides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.