When a structure undergoes seismic excitation, the intensities and spatial distributions of the reactive weights on the structure may not be the same as those assumed in original design. Such a difference is inevitable due to many facts with the random nature (e.g., redistribution of live load), resulting in accidental eccentricity and consequently torsional response in the system. The added torsion can cause excessive deformation and premature failure of the lateral force resisting system. Its detrimental effect is typically accounted for in most building design codes with an arbitrarily specified accidental eccentricity value. While it tends to amplify drift response of buildings under earthquake excitations, it is unclear whether the code specified accidental eccentricity is quantitatively adequate or not in seismic fragility assessment of steel moment frames (including low-rise, mid-rise and high-rise frames) with random reactive weight distributions. This thesis applies surveyed dead and live load intensities and distributions to three representative steel moment resisting frame structures that have been widely investigated in a series of projects under the collaboration of the Structural Engineers Association of California (SEAOC), the Applied Technology Council (ATC), and Consortium of Universities for Research in Earthquake Engineering (CUREE), known as SAC. Based on an extensive parametric study and incremental nonlinear dynamic analyses, it is found that variable load intensity and eccentricity had negligible impacts on the inter-story drifts of the low-and high-rise steel moment frames. However, they affect to a higher degree the performance of the mid-rise steel moment frames. Moreover, it is found that under the maximum considered earthquake (MCE) event, the actual drifts in steel moment frames with random reactive weight distributions can be conservatively captured through consideration of the code specified accidental eccentricities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.