Objective
Candida auris is a globally emerging pathogen associated with significant mortality. This pathogen frequently is misidentified by traditional biochemical methods and is resistant to commonly used antifungals. The echinocandins currently are recommended as the first-line treatment for C. auris infections. The objective of this work is to demonstrate the challenges associated with C. auris in the real-world setting.
Methods
A 54-year-old male presented to our institution for concerns of sepsis on multiple occasions over a 5-month period. Eleven urine cultures were positive over this timeframe for yeast (9 unidentified Candida isolates and 2 C. lusitaniae isolates). On day 27, the patient developed echinocandin-susceptible candidemia, which was initially identified as C. haemulonii but later accurately identified as C. auris at an outside mycology reference laboratory. Approximately 10 weeks later, the patient had a recurrence of candidemia, this time caused by an echinocandin-resistant C. auris strain.
Results
Genomic DNA sequencing performed at the outside mycology reference laboratory identified a single serine to proline base pair change at position 639 (S639P) in the hotspot 1 region of the FKS1 gene of the echinocandin-resistant strain.
Conclusions
Our experiences highlight 4 major concerns associated with C. auris: misidentification, persistent colonization, infection recurrence despite the receipt of appropriate initial therapy, and development of resistance.
This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium. Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora. In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium. There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available.
Invasive fungal infections are an important cause of morbidity and mortality affecting primarily immunocompromised patients. While fungal identification to the species level is critical to providing appropriate therapy, it can be slow and laborious and often relies on subjective morphological criteria. The use of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry has the potential to speed up and improve the accuracy of identification. In this multicenter study, we evaluated the accuracy of the Vitek MS v3.0 system in identifying 1,601 clinical mold isolates compared to identification by DNA sequence analysis and supported by morphological and phenotypic testing. Among the 1,519 isolates representing organisms in the v3.0 database, 91% ( = 1,387) were correctly identified to the species level. An additional 27 isolates (2%) were correctly identified to the genus level. Fifteen isolates were incorrectly identified, due to either a single incorrect identification ( = 13) or multiple identifications from different genera ( = 2). In those cases, when a single identification was provided that was not correct, the misidentification was within the same genus. The Vitek MS v3.0 was unable to identify 91 (6%) isolates, despite repeat testing. These isolates were distributed among all the genera. When considering all isolates tested, even those that were not represented in the database, the Vitek MS v3.0 provided a single correct identification 98% of the time. These findings demonstrate that the Vitek MS v3.0 system is highly accurate for the identification of common molds encountered in the clinical mycology laboratory.
Monitoring antifungal susceptibility patterns for new and established antifungal agents seems prudent given the increasing prevalence of uncommon species associated with higher antifungal resistance. We evaluated the activity of isavuconazole against 4,856 invasive yeasts and molds collected worldwide.
We report the first case of human infection with the fungal plant pathogen Macrophomina phaseolina in a Sri Lankan-born Canadian man following a renal transplant in India. The patient subsequently succumbed to invasive infection with Scytalidium dimidiatum. Molecular sequence analysis confirmed the identification of both fungi and revealed that they are related species within the ascomycete family Botryosphaeriaceae. We review the rationale for the recent reclassification of S. dimidiatum as Neoscytalidium dimidiatum and of Nattrassia mangiferae (formerly considered a synanamorph of S. dimidiatum) as Neofusicoccum mangiferae. This and other recent cases illustrate the potential for plant pathogenic fungi to cause invasive human diseases which are refractory to antifungal therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.