Conversion rates for laparoscopic colectomy are dependent on a multitude of factors that require appropriate adjustment including the learning curve (operative experience) for individual surgeons. The laparoscopic model described can be used as the basis for performance monitoring between or within institutions.
Patients scheduled for a laparotomy and major intestinal or rectal resection are suitable for management by a pathway of controlled rehabilitation with early ambulation and diet. Pathway patients have a shorter hospital stay, with no adverse effect on patient satisfaction, pain scores, or complication rates. Patients younger than 70 years of age derive the optimal benefit, and increased surgeon experience improves outcome.
Among hospitals in the Premier Inc Perspective Database reporting SCIP performance, adherence measured through a global all-or-none composite infection-prevention score was associated with a lower probability of developing a postoperative infection. However, adherence reported on individual SCIP measures, which is the only form in which performance is publicly reported, was not associated with a significantly lower probability of infection.
Quantum computing leverages the quantum resources of superposition and entanglement to efficiently solve computational problems considered intractable for classical computers. Examples include calculating molecular and nuclear structure, simulating strongly-interacting electron systems, and modeling aspects of material function. While substantial theoretical advances have been made in mapping these problems to quantum algorithms, there remains a large gap between the resource requirements for solving such problems and the capabilities of currently available quantum hardware. Bridging this gap will require a co-design approach, where the expression of algorithms is developed in conjunction with the hardware itself to optimize execution. Here, we describe a scalable co-design framework for solving chemistry problems on a trapped ion quantum computer, and apply it to compute the ground-state energy of the water molecule. The robust operation of the trapped ion quantum computer yields energy estimates with errors approaching the chemical accuracy, which is the target threshold necessary for predicting the rates of chemical reaction dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.