SummarySeveral protein families control intracellular transport processes in eukaryotic cells. Here, we show that the Rab11 GTPase effector protein Rab11-FIP3 (henceforth, FIP3) directly interacts with the dynein light intermediate chain 1 (DLIC-1, gene symbol DYNC1LI1) subunit of the cytoplasmic dynein 1 motor protein complex. We show that Rab11a, FIP3 and DLIC-1 form a ternary complex and that DLIC-1 colocalises with endogenous FIP3 and Rab11a in A431 cells. We demonstrate that association between FIP3 and DLIC-1 at the cell periphery precedes minus-end-directed microtubule-based transport, that FIP3 recruits DLIC-1 onto membranes, and that knockdown of DLIC-1 inhibits pericentrosomal accumulation of key endosomal-recycling compartment (ERC) proteins. In addition, we demonstrate that expression of a DLIC-1-binding truncation mutant of FIP3 disrupts the ability of ERC proteins to accumulate pericentrosomally. On the basis of these and other data, we propose that FIP3 links the Rab11 GTPase and cytoplasmic dynein to mediate transport of material from peripheral sorting endosomes to the centrally located ERC.
The Rab11-FIPs (Rab11-family interacting proteins; also known as FIPs) constitute an evolutionarily conserved protein family that act as effector molecules for multiple Rab and Arf (ADP-ribosylation factor) GTPases. They were initially characterized by their ability to bind Rab11 subfamily members via a highly-conserved C-terminal RBD (Rab11-binding domain). Resolution of the crystal structure of Rab11 in complex with FIPs revealed that the RBD mediates homodimerization of the FIP molecules, creating two symmetrical interfaces for Rab11 binding and leading to the formation of a heterotetrameric complex between two FIP and two Rab11 molecules. The FIP proteins are encoded by five genes and alternative splicing has been reported. Based on primary structure, the FIPs were subcategorized into two classes: class I [Rip11, FIP2 and RCP (Rab-coupling protein)] and class II (FIP3 and FIP4). Recent studies have identified the FIPs as key players in the regulation of multiple distinct membrane trafficking events. In this mini-review, we summarize the Rab11-FIP field and discuss, at molecular and cellular levels, the recent findings on FIP function.
A systematic screen of the entire human Rab GTPase family for interactions with myosin Va identified 10 novel Rab partners for myosin Va, all of which belong to the endocytic recycling and post-Golgi secretory membrane network. However, Rab10 and Rab11 appear to be the major determinants of its recruitment to intracellular membranes.
Comprising over 60 members, Rab proteins constitute the largest branch of the Ras superfamily of low-molecular-mass G-proteins. This protein family have been primarily implicated in various aspects of intracellular membrane trafficking processes. On the basis of distinct subfamily-specific sequence motifs, many Rabs have been grouped into subfamilies. The Rab11 GTPase subfamily comprises three members: Rab11a, Rab11b and Rab25/Rab11c, which, between them, have been demonstrated to bind more than 30 proteins. In the present paper, we review the function of the Rab11 subfamily. We describe their localization and primary functional roles within the cell and their implication, to date, in disease processes. We also summarize the protein machinery currently known to regulate or mediate their functions and the cargo molecules which they have been shown to transport.
Rab11-FIP3 is an endosomal recycling compartment (ERC) protein that is implicated in the process of membrane delivery from the ERC to sites of membrane insertion during cell division. Here we report that Rab11-FIP3 is critical for the structural integrity of the ERC during interphase. We demonstrate that knockdown of Rab11-FIP3 and expression of a mutant of Rab11-FIP3 that is Rab11-binding deficient cause loss of all ERCmarker protein staining from the pericentrosomal region of A431 cells. Furthermore, we find that fluorophorelabelled transferrin cannot access the pericentrosomal region of cells in which Rab11-FIP3 function has been perturbed. We find that this Rab11-FIP3 function appears to be specific because expression of the equivalent Rab11-binding deficient mutant of Rab-coupling protein does not perturb ERC morphology. In addition, we find that other organelles such as sorting and late endosomes are unaffected by loss of Rab11-FIP3 function. Finally, we demonstrate the presence of an extensive coiled-coil region between residues 463 and 692 of Rab11-FIP3, which exists as a dimer in solution and is critical to support its function on the ERC. Together, these data indicate that Rab11-FIP3 is necessary for the structural integrity of the pericentrosomal ERC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.