One of the major research interests of nanomedicine is the designing of harmless and biocompatible medical devices. To improve the features of Ti surface, TiO2 based nanotube (TNT) films (50 nm diameter) achieved by anodic oxidation and thermal treatment were grown on titanium and on Ti6Al4V and Ti6Al7Nb alloys. Their in vitro toxicity and biocompatibility were investigated using G292 osteoblast cell line. The LDH release after 24 and 48 h of exposure demonstrated that TNT layers were not cytotoxic. The cell growth on TNT films deposited on titanium and Ti6Al4V was significantly increased compared with Ti6Al7Nb. F-actin staining showed a better organized actin cytoskeleton in osteoblasts grown on these two samples, which provide the best conditions for osteoblast attachment and spreading. Analysis of GSH distribution revealed a higher nuclear level in the samples with TNTs compared with Ti plate without nanotubes, indicating an active proliferation. Thus, nuclear glutathione levels can be used as a useful biomarker for biocompatibility assessment. Our results suggest that the substrate for TNTs can have a significant impact on cell morphology and fate. In conclusion, the TNT/Ti and TNT/Ti6Al4V were toxicity-free and can provide a proper nanostructure for a positive cell response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.