The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.
Understanding the origin of the carbon (C) stabilised in soils is crucial in order to device management practices that will foster C accumulation in soils. The relative contributions to soil C pools of roots vs. shoots is one aspect that has been mostly overlooked, although it appears a key factor that drives the fate of plant tissue C either as mineralized CO 2 or as stabilized soil organic matter (SOM). Available studies on the subject consistently indicate that root C has a longer residence time in soil than shoot C. From the few studies with complete datasets, we estimated that the mean residence time in soils of root-derived C is 2.4 times that of shoot-derived C. Our analyses indicate that this value is biased neither by an underestimation of root contributions, as exudation was considered in the analysis, nor by a priming effect of shoot litter on SOM. Here, we discuss the main SOM stabilisation mechanisms with respect to their ability to specifically protect root-derived SOM. Comparing in situ and incubation experiments suggests that the higher chemical recalcitrance of root tissues as compared to that of shoots is responsible for only a small portion, i.e. about one fourth, of the difference in mean residence time in soils of root-derived vs. shootderived C. This suggests that SOM protection mechanisms other than chemical recalcitrance are also enhanced by root activities: (1) physico-chemical protection, especially in deeper horizons, (2) micrometer-scale physical protection through myccorhiza and root-hair activities, and (3) chemical interactions with metal ions. The impact of environmental conditions within deeper soil layers on root C stabilisation appear difficult to assess, but is likely, if anything, to further increase the ratio between the mean residence time of root vs. shoot C in soils. Future advances are expected from isotopic studies conducted at the molecular level, which will help unravel the fate of individual shoot and root compounds, such as cutins and suberins, throughout soil profiles.
Despite their low carbon (C) content, most subsoil horizons contribute to more than half of the total soil C stocks, and therefore need to be considered in the global C cycle. Until recently, the properties and dynamics of C in deep soils was largely ignored. The aim of this review is to synthesize literature concerning the sources, composition, mechanisms of stabilisation and destabilization of soil organic matter (SOM) stored in subsoil horizons. Organic C input into subsoils occurs in dissolved form (DOC) following preferential flow pathways, as aboveground or root litter and exudates along root channels and/or through bioturbation. The relative importance of these inputs for subsoil C distribution and dynamics still needs to be evaluated. Generally, C in deep soil horizons is characterized by high mean residence times of up to several thousand years. With few exceptions, the carbon-to-nitrogen (C/N) ratio is decreasing with soil depth, while the stable C and N isotope ratios of SOM are increasing, indicating that organic matter (OM) in deep soil horizons is highly processed. Several studies suggest that SOM in subsoils is enriched in microbial-derived C compounds and depleted in energy-rich plant material compared to topsoil SOM. However, the chemical composition of SOM in subsoils is soil-type specific and greatly influenced by pedological processes. Interaction with the mineral phase, in particular amorphous iron (Fe) and aluminum (Al) oxides was reported to be the main stabilization mechanism in acid and near neutral soils. In addition, occlusion within soil aggregates has been identified to account for a great proportion of SOM preserved in subsoils. Laboratory studies have shown that the decomposition of subsoil C with high residence times could be stimulated by addition of labile C. Other mechanisms leading to destabilisation of SOM in subsoils include disruption of the physical structure and nutrient supply to soil microorganisms. One of the most important factors leading to protection of SOM in subsoils may be the spatial separation of SOM, microorganisms and extracellular enzyme activity possibly related to the heterogeneity of C input. As a result of the different processes, stabilized SOM in subsoils is horizontally stratified. In order to better understand deep SOM dynamics and to include them into soil C models, quantitative information about C fluxes resulting from C input, stabilization and destabilization processes at the field scale are necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.