This paper presents the influence of adding black carbon nanopowder (average size 13 nm, PlasmaChem) in soybean oil in different massic concentration (0.25 %, 0.50 % and 1 %) on several tribological parameters: friction coefficient and wear scar diameter. Tests are done on a four-ball machine. The test parameters were load: 100 N, 200 N and 300 N and speed 1000 rpm, 1400 rpm, 1800 rpm. The test balls are lime polished, made of chrome alloyed steel, having 12.7±0.0005 mm in diameter, with 64-66 HRC hardness. The sample oil volume required for each test was 8±1 ml. This type of anti-wear additive, because the particle distribution is not evenly in contact during the running, could not help improving the tribological behavior. It does not reduced the friction coefficient and wear scar diameter as compared to the neat soybean oil. The authors estimate that the additive should be bonded (physically or chemically) on the triboelements for having better results.
Abstract. Vegetable oil-based lubricants have several disadvantages as compared to mineral and synthetic ones, including low viscosity that not encourage the generation of a continuous film when the tribosystem runs, consequently, implying a mixt or boundary. This is why the additivation of such oils is of great interests for researchers, producers and users. This paper presents results of testing the soybean oil additivated with nano graphite (0.25%wt, 0.50%wt and 1%wt) on a four ball machine. The friction coefficient is slightly increased for the additivated lubricants, but no evident dependency on concentration and test conditions was noticed. Supplementary tests will give the opportunity of a statistical approach of this parameter. Any concentration of nano graphite makes the wear parameter (wear scar diameter) to slightly increase as compared to the values obtained for the non-additivated soybean oil. The increase of the nano graphite concentration in this vegetable oil does not influence significantly the wear parameter, meaning that, at least for the tested regime, this is not an efficient anti-wear additive.
The purpose of our study was to analyze the influence of Ti-6Al-4V and Ti-15Zr dental implants, with complex implant designs, on the cortical and trabecular mandibular bone in regards to the stress value and its distribution using finite element analysis. A total of four 3D implant assemblies were modeled, each consisting of implant, abutment, abutment screw, cement layer, and ceramic crown. Implants were modeled with different macrostructure designs with focus on the main thread and microthread design as well as complex geometry details. All implants were inserted in the second molar position in the mandible bone section, consisting of two macro-structures, a 2 mm thick cortical bone and an internal cancellous bone. Results revealed that small variations in the implant design led to a great difference in the stress values and distribution in both cortical and cancellous bone. Our results suggest no major difference between Ti-6Al-4V and Ti-15Zr in regards to the material�s ability to decrease stress in the periimplant bone. However, within the same material, results revealed important differences between thread design and implant geometry concerning the stress values and stress concentration in cortical and cancellous bone in the mandibular model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.