Additive manufacturing, also known as 3D printing, has begun to play a significant role in the field of medical devices. This review aims to provide a comprehensive overview and classification of additively manufactured medical instruments for diagnostics and surgery by identifying medical and technical aspects. Methods: A scientific literature search on additively manufactured medical instruments was conducted using the Scopus database. Results: We categorized the relevant articles ( 71) by considering the novelty of each proposed instrument and its clinical application. Then, we analyzed the relevant articles by examining the reasons behind choosing additive manufacturing technology to produce instruments for diagnostics and surgery. Possible customization (27%) and Cost-effectiveness (23%) were the main reasons expressed. Technical specifications of the additive manufacturing technology and the material used were also analyzed, and a tendency of using material extrusion technology (35% of the applications) and polymeric materials (86% of the applications) was shown. Conclusions: Additive manufacturing is opening the door to a new approach in the production of medical devices, which allows the complexity of their designs to be pushed to the extreme. However, we found that technical limitations need to be tackled and important aspects such as sterilization or debris contamination are still not considered to be relevant factors during the design and fabrication process. Keeping in mind the challenges of such a new field, additive manufacturing technology can be considered as a great opportunity to provide easy access to healthcare in developing countries as well as an important step toward patient-specific medicine.
In minimally invasive surgery, maneuverability is usually limited and a large number of degrees of freedom (DOF) is highly demanded. However, increasing the DOF usually means increasing the complexity of the surgical instrument leading to long fabrication and assembly times. In this work, we propose the first fully 3D printed handheld, multi-steerable device. The proposed device is mechanically actuated, and possesses five serially controlled segments. We designed a new compliant segment providing high torsion and axial stiffness as well as a low bending stiffness by merging the functions of four helicoids and a continuum backbone. Compliant segments were combined to form the compliant shaft of the new device. In order to control this compliant shaft, a control handle was designed that mimics the shaft structure. A prototype called the HelicoFlex was built using only three 3D printed parts. HelicoFlex, with its 10 degrees of freedom, showed a fluid motion in performing single and multi-curved paths. The multi-steerable instrument was 3D printed without any support material in the compliant shaft itself. This work contributes to enlarge the body of knowledge regarding how additive manufacturing could be used in the production of multi-steerable surgical instruments for personalized medicine.
In the field of medical instruments, additive manufacturing allows for a drastic reduction in the number of components while improving the functionalities of the final design. In addition, modifications for users’ needs or specific procedures become possible by enabling the production of single customized items. In this work, we present the design of a new fully 3D-printed handheld steerable instrument for laparoscopic surgery, which was mechanically actuated using cables. The pistol-grip handle is based on ergonomic principles and allows for single-hand control of both grasping and omnidirectional steering, while compliant joints and snap-fit connectors enable fast assembly and minimal part count. Additive manufacturing allows for personalization of the handle to each surgeon’s needs by adjusting specific dimensions in the CAD model, which increases the user’s comfort during surgery. Testing showed that the forces on the instrument handle required for steering and grasping were below 15 N, while the grasping force efficiency was calculated to be 10–30%. The instrument combines the advantages of additive manufacturing with regard to personalization and simplified assembly, illustrating a new approach to the design of advanced surgical instruments where the customization for a single procedure or user’s need is a central aspect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.