Homocystinuria is an inherited metabolic disease biochemically characterized by tissue accumulation of homocysteine (Hcy). Mental retardation, ischemia and other neurological features, whose mechanisms are still obscure are common symptoms in homocystinuric patients. In this work, we investigated the effect of Hcy administration in Wistar rats on some parameters of energy metabolism in the hippocampus, a cerebral structure directly involved with cognition. The parameters utilized were 14CO2 production, glucose uptake, lactate release and the activities of succinate dehydrogenase and cytochrome c oxidase (COX). Chronic hyperhomocysteinemia was induced by subcutaneous administration of Hcy twice a day from the 6th to the 28th day of life in doses previously determined in our laboratory. Control rats received saline in the same volumes. Rats were killed 12 h after the last injection. Results showed that Hcy administration significantly diminished 14CO2 production and glucose uptake, as well as succinate dehydrogenase and COX activities. It is suggested that impairment of brain energy metabolism may be related to the neurological symptoms present in homocystinuric patients.
Hyperhomocysteinemia has been related to various diseases, including homocystinuria, neurodegenerative and hepatic diseases. In the present study we initially investigated the effect of chronic homocysteine administration on some parameters of oxidative stress, named total radical-trapping antioxidant potential, total antioxidant reactivity, catalase activity, chemiluminescence, thiobarbituric acid-reactive substances, and total thiol content in liver of rats. We also performed histological analysis, evaluating steatosis, inflammatory infiltration, fibrosis, and glycogen/glycoprotein content in liver tissue sections from hyperhomocysteinemic rats. Finally, we evaluated the activities of aminotransferases in liver and plasma of hyperhomocysteinemic rats. Wistar rats received daily subcutaneous injection of Hcy from their 6th to their 28th day of life. Twelve hours after the last injection the rats were sacrificed, liver and plasma were collected. Hyperhomocysteinemia decreased antioxidant defenses and total thiol content, and increased lipid peroxidation in liver of rats, characterizing a reliable oxidative stress. Histological analysis indicated the presence of inflammatory infiltrate, fibrosis and reduced content of glycogen/glycoprotein in liver tissue sections from hyperhomocysteinemic rats. Aminotransferases activities were not altered by homocysteine. Our data showed a consistent profile of liver injury elicited by homocysteine, which could contribute to explain, at least in part, the mechanisms involved in human liver diseases associated to hyperhomocysteinemia.
We investigated the hypothesis that folate administration would prevent hyperhomocysteinemia-induced memory deficits and Na(+),K(+)-ATPase activity inhibition. Chronic hyperhomocysteinemia was induced from the 6th to the 28th day of life by subcutaneous injection of homocysteine (0.3-0.6 micromol/g), twice a day; control Wistar rats received the same volume of saline solution (0.9% NaCl). Half of the homocysteine- and saline-treated groups also received intraperitoneal administration of folate (0.011 micromol/g) from the 6th to the 28th day of life. A group of animals was killed 12 h after the last injection, plasma and parietal cortex were collected for biochemical analysis. Another group stayed at Central Animal House until 60th day of life, when the rats were submitted to behavioral testing in water maze or were killed for evaluation of cortical Na(+),K(+)-ATPase activity. Results showed that hyperhomocysteinemia impaired reference memory for platform location, as assessed by fewer crossings to the platform place and increased latency for the first crossing, when compared to controls. In the working memory task homocysteine-treated animals also needed more time to find the platform. We also observed that Na(+),K(+)-ATPase activity was reduced in parietal cortex of hyperhomocysteinemic rats sacrificed 12h after the last injection of homocysteine (29-day-old rats). In contrast, this enzyme was not altered when the rats were sacrificed 31 days after the treatment (60-day-old rats). Hyperhomocysteinemic rats treated with folate had all those impairments prevented, an effect probably related to folate antioxidant properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.